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Outline

Astrophysical uncertainties in dark matter detection
l - C.A. J. O'Hare [1604.03858]

Observing the local Milky Way dark matter distribution

WIMP directional detectors Axion haloscopes

> C.A. J. O'Hare & A. M. Green [1410.2749] > C. A. J. O'Hare & A. M. Green [in prep.]
> B. J. Kavanagh & C. A. J. O'Hare [1609.08630]



We haven't enough baryons...
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..dark matter is there and it's probably a particle
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WIMPs
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— Observed relic density would imply weak-scale annihilations
— WIMPs show up in BSM physics

WIMP = Weakly Interacting Massive Particle



Direct detection

Milky Way dark matter halo

WIMP wind

Measure elastic scattering
between nuclei and WIMPs

\




Dark matter
detectors

DEAPR-3600
DAMA
XVIASS

33

Key experimental problems

— background shielding

— electron /nuclear recoil
discrimination

— low energy thresholds




Direct dark matter detection
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WIMP-nucleon cross section [cmz]
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WIMP-nucleus scattering

Double differential event rate (recoil energy E and direction q)

dR opCN
dE,dS), 47T,uxpmx

x [ (E,) %

Particle physics

: : — SDIN-1I . 81 2
e WIMP-nucleus interaction spin-independent: Cy o 4

— spin-dependent: C}° o (J +1)/J

Nuclear physics
e Form factor F*(E,)

e Local DM density
e Radon transform of velocity distribution:



Astrophysical uncertainties

e Experimental analyses typically assume

e Smooth isothermal sphere (cow)
— Maxwell-Boltzmann velocity distribution

f(v)

G_UQ/US ‘V‘ < Uesc
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fv) = { 0 V| > Vesc
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Free parameters:
« Rotation speed, v, = 180 — 240 km s ** Lavalle & Magni [1411.1325]

e Escape velocity, v _= 533 & 50 km s Piffl et al [1309.4293]
e Local density, p, = 0.2 - 0.8 GeV cm™ Read et al [1404.1938] ...




f(v) x 10°

Halo simulations

* N-body/hydrodynamic simulations persistently exhibit

non-Maxwellian structure
*Although adding baryons can improve Maxwellian fit
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Effect of astrophysical uncertainties

Uncertainty in exclusion

limits =

e.g. McCabe [1005.0579]
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The neutrino floor

CAJ O'Hare [1604.03858]
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Dark matter substructure

Observations/simulations suggest possible substructure in local MW
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+Dark Disk
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Speed distribution = Scattering rate

Possible substructures
e Tidal streams Purcell et al. [1203.6617]
e Dark disk Pillepich et al. [1308.1703], Schaller et al. [1605.02770]
e Debris flows

Kuhlen et al. [1202.0007]




Measuring astrophysical parameters

WIMP mass E
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» Unexpected substructure leads to biased
reconstruction of particle parameters
Peter [1103.5145]

e But astrophysical parameters are
difficult to measure Lee [1202.5035]
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Astrophysical uncertainties cause
problems for direct detection:
— Uncertainty in experimental limits
— Neutrino floor higher

— Degeneracy with particle physics parameters
— Possible presence of substructure

Solution: go and measure the local
Milky Way halo directly



Astrophysical uncertainties cause
problems for direct detection:
— Uncertainty in experimental limits
— Neutrino floor higher

— Degeneracy with particle physics parameters
— Possible presence of substructure

Solution: go and measure the local
Milky Way halo directly

Bonus: find out about the formation history
of the Milky Way...



Directional detection



Directional detection

"ay,

WIMP wind
~220 km /s

Dark matter halo




Energy+Direction dependence 100 GeV WIMP

F recoil energy range —— 010 keV 10 - 20 keV

Mollweide projection of recoil skymap

c.f.

20 - 30 keV 30 - 40 keV

Peak direction toward —Vla@

60 - 70 keV 70 - 80 keV

50 - 60 keV

Secondary features S
. . max

° Rlng at low €NErgIES Bozorgnia [1111.6361]

e Aberration over time Bozorgnia [1205.2333]

" Recoil pdf




Directional detection

« Low pressure gas time projection chamber (TPC):

- cathode
WIMP
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Directional detectors

Best at the moment: low pressure gas TPCs

>

> NEWAGE (Japan)

DRIFT (UK) —
- MIMAC (FranM

Many other ideas*...

> Emulsion plates
> Crystal scintillators

> LXe/Ar Columnar recombination
> DNA (perhaps...)

_SD exclusion limits (pb) 1. Battat CYGNUS 15
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Directional detection

Disadvantages (TPCs): T = A
> Inherently low mass O(0.1 kg) 2K 7

> Angular resolution O(10) deg.
» Sense recognition (4+q or -q)

» 1-d /2-d /3-d readout

1620 um

C.Couturier

SRIM simulation (CF,) v DM 16
| -

-

1960 um
Advantages:
> Excellent electron-nuclear recoil discrimination Billard et a/ [1205.0973]
> Reject isotropy with O(].O) events Morgan et al [astro-ph /0408047]
» Discover DM with O(30) events Green & Morgan[1002.2717]
> No neutrino floor Grothaus et a/[1406.5047]
> Access velocity distribution Kavanagh & O'Hare [1609.08630]
> Probe DM substructure 0'Hare & Green [1410.2749]



Detecting streams

 Tidal streams produce striking directional recoil patterns:

” Stream
e 1 O'Hare & Green [1410.2749]
f)T 1
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Detecting streams

e Could detect Sagittarius stream with 20 kg-year directional detector
> Non-parametrically (test for median direction/rotational symmetry)
> Parametrically (model stream — likelihood fit)

10 - 20 keV
(—

O'Hare & Green [1410.2749]
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We want something more general...

There are ways to deal with the unknown speed distribution in
standard non-directional detection e.g.,

Halo independent methods
e.g. Fox [1011.1915], Frandsen [1111.0292], Kahlhoefer [1607.04418], and many more...

1
- Measure g(fvmin):/ f( )dv from data

min

General parameterisations e.g. Peter [1103.5145], Kavanagh & Green [1303.6868]

— use something like f(v —eXp< Z apv ) and fit for a,

Add uncertainties on parameters into fit e.g. Strigari & Trotta [0906.5361]

— pick a model and estimate astrophysical parameters
(with priors from measurements of MW)

Add more parameters to deal with non-Maxwellian structure
e.g. Lee, & Peter [1202.5035], O'Hare & Green [1410.2749]

..But what about the velocity distribution?




Empirical velocity distribution
B. J. Kavanagh & C. A. J. O'Hare [1609.08630]

e Can we extract the velocity distribution from directional
experiments in a model independent way?

f(v) = f(v,cos60,0) =< f*(v)

True distribution
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Reconstructing the velocity distribution

e For a given benchmark model generate mock data for two
future directional detectors

Target Threshold Exposure

Experiment 1: Xe 5 keV 1 ton-year
_I_

Experiment 2: F 20 keV 10 kg-year

* Compare three methods of reconstruction

Method A: Method B: Method C:
Best case Reasonable case Worst case

We know the underlying We know the form of We know nothing at all
velocity distribution and the velocity distribution about the velocity

its parameters but not the parameters distribution

Fit: mass, cross-section Fit: mass, cross section + Fit: mass, cross section +
astrophysical params. empirical parameters




Benchmarks

SHM: [0)
v, = 220 km /s
v = 533 km/s

SHM+Stream: f(v)
Purcell [1203.6617]

SHM--Debris flow: f(v)
Kuhlen [1202.0007]

Speed dist.
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Experiments w/ directional sensitivity
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Experiments w/ directional sensitivity
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Experiments w/ directional sensitivity
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Experiments w/ directional sensitivity
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Shape of velocity distribution

Reconstructed binned distributions

Method B - known form Method C - empirical - SHM+4-Stream model
' : ' true distribution
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Comparing reconstructions

e |deally we extract something physical to hint towards substructure
e.g. directionally averaged speeds:

27 1
Average parallel to Earth's motion: (v,) = /dv/ d(b/ dcos @ (v cos ) v? f(v)
0 —1

2m 1
Average transverse to Earth's motion: (v3) = fdfu f do / d cos 0 (v sin? §) v* f(v)
0 —1

350 . . . . 350 . . .
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— Empirical fit
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How could we use this method?

Detect dark matter (in a directional detector)

Measure WIMP parameters
— use an empirical method to avoid bias

Derive velocity parameters
— Do they hint towards substructure?

If so, fit with particular model
— substructure detected?



Axions



Strong CP problem

QCD permits a CP violating term,

Gluon fields Quarks CP-violating term
r _ 1Ga, (lany (i~ DM M | 992 (e éa,pw
QCD — _Z v + Z Q(Z')/‘u, - q)q | 3972 MY
q

But neutron EDM _ —10
measurements = 9 — (9 —+ arg det ./\/lq < 10

constrain phase

Baker et al [hep-ex/0602020]

Strong CP problem: why is the CP-violating
phase so unnaturally small?




Pecceil-Quinn mechanism

= Solution to strong-CP problem: promote phase to dynamical field

1 L 92 CL(.CC) a  Yapy
‘CQCD—I—a.Xion = ... T ia@aaﬁ - 9972 fa, GW/G ﬁ

* Field vev nulls the CP violation
= Predicts a new particle, the axion

= Small mass given by QCD instanton effects (pion mixing)
10° GeV)
fa

m, ~ 6eV (



Axion/ALP constraints

e Generalise to light particles outside of the PQ solution,
— axion-like particles (ALPs)
e Measure conversion to photons inside magnetic fields:
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Axion Haloscope

 Signal enhancement:
— resonant frequency = axion mass
hv = myc?

e But we don't know axion mass...
— Must scan over a range of frequencies

Mg
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. r 9
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Axion Dark Matter Experiment (ADMX)

I = e\ : S
; R T e

© Asztalos et al [0910.5914] TS, BN

* Resonate at microwave fregs.
e 8T B-field
e 4 K noise temperature

e 200 litre volume
 Measure power < 102 W

Bucking
Magnet

sSQUID
Amplifier

4m

Microwave
Cavity

© ADMX



Power — Py [10_22 W]

o
o

o o o o
o o o o
o2

o
o

|

e

1

2l

|

ol

1

v ?—: 18:%

Extract
astrophysical
parameters

Jan 2016

— Measure axion power
spectrum

O'Hare & Green [in prep.]

+ —7 = 10 days
[ ——7 = 1 year




Example power spectra from distributions in VL2 simulation

« Samples from 1 kpc bubbles @ 8 kpc Gal. radius

Jan 2016

v — 3¢ |kHg|
Frequency —



Measuring axion streams

e Can extract all five properties of a stream from sinusoid

> Stream density <— [Power relative to bulk
> Stream dispersion <«— Width of sinusoid

> Galactic velocity <« Amplitude, phase and mean of sinusoid
O'Hare & Green [in prep.]

(Galactic co-ordinates)

Jan 2018

Jan 2017

Jan 2016

500 -400 -300 -200 -100 100 200 300 400 500

Speed [km S

1 05 0 05 1 15 2 25 3

VvV — 5= |kHz



1.5

05

Axion miniclusters

 Collapsing density perturbations in the early Universe can form small
clusters of axions

0
N Density contrast: @ — opP ~
Iy

Mass: M ~ 1()_12 M®
° Radius: R ~ 107 km

Density: p ~ 10° GeV em ™

e Could comprise non-negligible
fraction of DM halo
e Up to 10* pc3 in the local
0 stellar neighbourhood?
Tinyakov [1512.02884]

Julia Stadler IBS-MultiDark-IPPP workshop '16
05 1 15 2

3



Axion miniclusters

e Tidally disrupted by interactions with stars
— network of minicluster streams wrapping Milky Way
— stream crossing time O(1-100) days Tinyakov [1512.02884]

34x107km / My \Y° 2 Rgtr
Rstr =~ >
10_12M@

Tstr-x —
@(1 —|— @)1/3 UO\/l _ Vstr-Viab

Vo VUstr

Jan 2021

Jan 2020
A

Jan 2019

Jan 2018

Jan 2017 Would need to be separated from
environmental noise peaks with
use of time/daily modulation

Jan 2016

v — % [kHz] O'Hare & Green [in prep.]



Summary

We must understand
local MW halo to do dark
matter detection

> Uncertainty in exclusion limits

> Biased particle measurements

> Neutrino floor closer to existing
limits

Ciaran O'Hare

Dark matter detectors

can help us understand
the local MW halo

> Directional detectors/
haloscopes well suited to
study the local halo

> Observe non-Maxwellian
structure

> Learn about formation
history of MW

Kings College London Dec 2016



Dark matter halo

Event rate dependent on pg / flab (v, 0)0(v - q — ;Jmin)dgv
e local density pPo
e velocity distribution fiab(V,%) = feal(V + Viap(?))

— lab VGlOCity: Vlab (t) = VLSR T Vpec + Vryev (t) + Vrot (t)
~220 km/s ~18 km/s ~30km/s ~0.5 km/s
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