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Axion haloscopes

Outline

Observing the local Milky Way dark matter distribution

WIMP directional detectors

Astrophysical uncertainties in dark matter detection
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...dark matter is there and it's probably a particle

We haven't enough baryons...

ClustersClusters

Galaxy rotationGalaxy rotation

CMB/BBNCMB/BBN

Planck [1502.01589]
Cyburt [1505.01076]

(c) Addison Wellsley (2009)



Tim Tate [1401.6085]



WIMPs

WIMPWIMP = WWeakly IInteracting MMassive PParticle

Assuming new particle is 
initially in thermal equilibrium

 → freeze-out with relic density 
proportional to 1/annihilation 
cross section

 → Observed relic density would imply weak-scale annihilations
 → WIMPs show up in BSM physics

Feng 2010



Direct detection

Milky Way dark matter halo

Measure elastic scattering 
between nuclei and WIMPs

WIMP wind
  ~220 km/s



Dark matter 
detectors
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Key experimental problems
  → background shielding
  → electron/nuclear recoil     
      discrimination
  → low energy thresholds



Direct dark matter detection

Encodes:
➢ WIMP mass & cross section
➢ Nuclear response
➢ Detector effects
➢ Astrophysical information...



J Billard, L Strigari, E Figueroa-Feliciano  [1307.5458] 

Neutrino floor

?

?

EXCLUDED



WIMP-nucleus scattering

Particle physics
● WIMP-nucleus interaction

Nuclear physics
● Form factor  

Astrophysics
● Local DM density 
● Radon transform of velocity distribution:

 → spin-independent:
    → spin-dependent:

Double differential event rate (recoil energy Er and direction )



Astrophysical uncertainties
● Experimental analyses typically assume Standard Halo Model (SHM)

● Smooth isothermal sphere (cow)
    → Maxwell-Boltzmann velocity distribution

Free parameters:  
● Rotation speed, 0 = 180 –   240 km s -1  Lavalle & Magni [1411.1325]

● Escape velocity, esc= 533 ± 50 km s-1  Piffl et al [1309.4293]

● Local density, ρ0 = 0.2 - 0.8 GeV cm-3 Read et al [1404.1938] ...



Halo simulations
● N-body/hydrodynamic simulations persistently exhibit 

non-Maxwellian structure
*Although adding baryons can improve Maxwellian fit

Vogelsberger [0812.0362]

Calore [1509.02164] Bozorgnia [1601.04707]



Effect of astrophysical uncertainties
Uncertainty in exclusion 
limits →
e.g. McCabe [1005.0579]

 ← Biased parameter 
estimation
e.g. Peter [1103.5145]   

CDMS Si

CRESST  

Xenon10  

CDMS Ge  

Correct f(v) Incorrect f(v)

[GeV] [GeV]



The neutrino floor
CAJ O'Hare [1604.03858] Astrophysical uncertainties 

lead to an increase in the 
neutrino floor of up to an 
order of magnitude in cross 
section

 1 ton-year
 10 ton-years

:

:





Dark matter substructure
Observations/simulations suggest possible substructure in local MW

Possible substructures
● Tidal streams  Purcell  et al. [1203.6617]
● Dark disk  Pillepich et al. [1308.1703], Schaller et al. [1605.02770]
● Debris flows  Kuhlen et al. [1202.0007]  

Speed distribution     Scattering rate



Measuring astrophysical parameters
● Unexpected substructure leads to biased 

reconstruction of particle parameters 
Peter [1103.5145]    

● But astrophysical parameters are 
difficult to measure Lee [1202.5035] 

dispersion

background

WIMP mass

dispersionbackgroundWIMP mass



Astrophysical uncertainties cause 
problems for direct detection:

 → Uncertainty in experimental limits 
 → Neutrino floor higher
 → Degeneracy with particle physics parameters
 → Possible presence of substructure

Solution: go and measure the local 
Milky Way halo directly



Astrophysical uncertainties cause 
problems for direct detection:

Solution: go and measure the local 
Milky Way halo directly

Bonus: find out about the formation history 
of the Milky Way...

 → Uncertainty in experimental limits 
 → Neutrino floor higher
 → Degeneracy with particle physics parameters
 → Possible presence of substructure



Directional detection



Dark matter halo

WIMP wind
  ~220 km/s

Directional detection



19F recoil energy range

Mollweide projection of recoil skymap
c.f.

Energy+Direction dependence

Peak direction toward 

Recoil pdf

100 GeV WIMP

Secondary features
● Ring at low energies Bozorgnia [1111.6361]

● Aberration over time Bozorgnia [1205.2333]



Directional detection
● Low pressure gas time projection chamber (TPC):
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Directional detectors
Best at the moment: low pressure gas TPCs
➢ DM-TPC (USA)
➢ NEWAGE (Japan)
➢ DRIFT (UK)
➢ MIMAC (France)

Many other ideas*...
➢ Emulsion plates
➢ Crystal scintillators
➢ LXe/Ar Columnar recombination
➢ DNA (perhaps...)

SD exclusion limits (pb)      J. Battat CYGNUS 15

SIMPLE

Non-directional limits

PICO (2015)

PICASSO



Advantages:
➢ Excellent electron-nuclear recoil discrimination Billard et al [1205.0973] 
➢ Reject isotropy with O(10) events Morgan et al [astro-ph/0408047]
➢ Discover DM with O(30) events Green & Morgan[1002.2717] 
➢ No neutrino floor  Grothaus et al [1406.5047]
➢ Access velocity distribution Kavanagh & O'Hare [1609.08630]
➢ Probe DM substructure O'Hare & Green [1410.2749]

Directional detection

Disadvantages (TPCs):
➢ Inherently low mass O(0.1 kg)
➢ Angular resolution O(10) deg.
➢ Sense recognition (+q or -q)
➢ 1-d/2-d/3-d readout

SRIM simulation (CF4 )
C.Couturier 
IDM 16



Detecting streams
● Tidal streams produce striking directional recoil patterns: 

Angular recoil pdf

O'Hare & Green [1410.2749]

Stream

Stream

Scattering



Detecting streams

O'Hare & Green [1410.2749]

Stream dispersion

Stream velocity

● Could detect Sagittarius stream with 20 kg-year directional detector 
➢ Non-parametrically (test for median direction/rotational symmetry)
➢ Parametrically (model stream   likelihood fit)→



There are ways to deal with the unknown speed distribution in 
standard non-directional detection e.g.,

● Halo independent methods

● General parameterisations

 

● Add uncertainties on parameters into fit

● Add more parameters to deal with non-Maxwellian structure

e.g. Fox [1011.1915], Frandsen [1111.0292], Kahlhoefer [1607.04418], and many more...

...But what about the velocity distribution?

e.g. Lee, & Peter [1202.5035], O'Hare & Green [1410.2749]

e.g. Strigari & Trotta [0906.5361]

e.g. Peter [1103.5145], Kavanagh & Green [1303.6868]

   → use something like  

Measure 

 → pick a model and estimate astrophysical parameters 
     (with priors from measurements of MW)

 → from data 

and fit for 

We want something more general...



● Can we extract the velocity distribution from directional 
experiments in a model independent way?

Empirical velocity distribution
B. J. Kavanagh & C. A. J. O'Hare [1609.08630]

True distribution Angular discretisation

Empirical polynomial 
fit in each bin

Kavanagh [1502.04224]



Reconstructing the velocity distribution

Method A:
Best case

We know the underlying 
velocity distribution and 

its parameters

Fit: mass, cross-section

Method B:
Reasonable case

We know the form of 
the velocity distribution 
but not the parameters

 Fit: mass, cross section + 
astrophysical params.

Method C:
Worst case

We know nothing at all 
about the velocity 

distribution
 

Fit: mass, cross section + 
empirical parameters

● For a given benchmark model generate mock data for two 
future directional detectors

● Compare three methods of reconstruction

Target Threshold Exposure
Experiment 1:   Xe    5 keV         1 ton-year

  +
Experiment 2:    F   20 keV 10 kg-year



Benchmarks

SHM:



SHM+Stream:
Purcell [1203.6617]

SHM+Debris flow:

Kuhlen [1202.0007] 

Speed dist. Velocity dist.











Shape of velocity distribution

true distribution

best fit distribution

Reconstructed binned distributions 
     → SHM+Stream model

Forward

Transverse

Backward



SHM+StreamSHM

Comparing reconstructions
● Ideally we extract something physical to hint towards substructure

e.g. directionally averaged speeds:

Known  form
Empirical fit

    Average parallel to Earth's motion:

Average transverse to Earth's motion: 



How could we use this method?
1. Detect dark matter (in a directional detector)

...

2. Measure WIMP parameters
 → use an empirical method to avoid bias

3. Derive velocity parameters 
 → Do they hint towards substructure?

4. If so, fit with particular model
 → substructure detected? 



Axions



Strong CP problem
QCD permits a CP violating term,

   Strong CP problem:  why is the CP-violating 
phase so unnaturally small?

Quarks CP-violating termGluon fields

But neutron EDM 
 measurements   →
constrain phase

Baker et al [hep-ex/0602020]



Peccei-Quinn mechanism

 Field vev nulls the CP violation

 Predicts a new particle,  the axion

 Small mass given by QCD instanton effects (pion mixing)

 Solution to strong-CP problem: promote phase to dynamical field 



Axion/ALP constraints

P.W. Graham et al [1602.00039]

● Generalise to light particles outside of the PQ solution,
  → axion-like particles (ALPs)

● Measure conversion to photons inside magnetic fields:



Axion Haloscope

B-field

Resonator  amplifier→
● Signal enhancement:  

 → resonant frequency = axion mass

● But we don't know axion mass...
 → Must scan over a range of frequencies

P
ow

er

Frequency

Resonant modesResonant modes

Axion peakAxion peak

a

a



Axion Dark Matter Experiment (ADMX)

● Resonate at microwave freqs.
● 8T B-field
● 4 K noise temperature
● 200 litre volume
● Measure power < 10-22 W

© ADMX

Asztalos et al [0910.5914]



 → Measure axion power 
spectrum

Extract 
astrophysical 
parameters

O'Hare & Green [in prep.]



Example power spectra from distributions in VL2 simulation

Time

Frequency

Power

● Samples from 1 kpc bubbles @ 8 kpc Gal. radius

O'Hare & Green [in prep.]





Measuring axion streams
● Can extract all five properties of a stream from sinusoid

➢ Stream density 
➢ Stream dispersion 
➢ Galactic velocity

Power relative to bulk 
Width of sinusoid
Amplitude, phase and mean of sinusoid







(Galactic co-ordinates)O'Hare & Green [in prep.]





Axion miniclusters

Julia Stadler IBS-MultiDark-IPPP workshop '16

● Collapsing density perturbations in the early Universe can form small 
clusters of axions

● Could comprise non-negligible 
fraction of DM halo

● Up to 1010 pc-3 in the local 
stellar neighbourhood?

Radius:

Mass:

Density contrast:

Density:

Tinyakov [1512.02884]



Axion miniclusters
● Tidally disrupted by interactions with stars 

 → network of minicluster streams wrapping Milky Way
 → stream crossing time  O(1-100) days   Tinyakov [1512.02884]

O'Hare & Green [in prep.]

Would need to be separated from 
environmental noise peaks with 
use of time/daily modulation





Summary

➔ Uncertainty in exclusion limits
➔ Biased particle measurements
➔ Neutrino floor closer to existing 

limits

We must understand 
local MW halo to do dark 

matter detection

Dark matter detectors 
can help us understand 

the local MW halo

➔ Directional detectors/ 
haloscopes well suited to 
study the local halo

➔ Observe non-Maxwellian 
structure

➔ Learn about formation 
history of MW 

  Ciaran O'Hare     Kings College London Dec 2016



Dark matter halo
Event rate dependent on
● local density 
● velocity distribution

~220 km/s ~18 km/s ~30 km/s ~0.5 km/s
 → lab velocity:
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