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Overview

* [ntroduction
* Dark matter detection
* Directional detection

* Probing galactic dark matter velocity distribution
= Eixpected signals from N-body simulations

= Tidal streams and substructure

» Neutrino floor

Lunch talk (15/01/2015)
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Weakly interacting massive particles
(WIMPs)

= Self-annihilating particles with weak scale interactions
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Detecting WIMPs

Direct detection
(Lab based experiments)
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Indirect detection

(Astronomical observation)




Direct detection
= Look for recoiling nuclei struck by WIMPs in Milky Way halo

= Very hard — lots of backgrounds

Cryogenic (heat) Liquid Noble (scintillation)
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WIMP-nucleon cross section [cm?]
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“Smoking gun” signals

= Annual Modulation (Drukier, Freese € Spergel 1986)

* Direction dependence (Spergel 1988)
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Directional Detection

= Measure energy and direction of nuclear recoils

Time Projection Chamber (TPC), usually with CF,

\4 % MIMAC collaboration
Sampling /
> =60 ns

@ 50 MHz
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= Others?
= Emulsions, DNA strands, nano-explosives, carbon nanotubes ...



Directional Detection

= Advantages:
* No mimicking backgrounds (c.f. DAMA /LIBRA ...)

= Measure velocity distribution

= Probe below neutrino floor

= Disadvantages:

= Experimental challenge

But given time/compensation...”



Directional detection

= Double differential event rate:
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ON WIMP-nucleus cross section
Galactic Halo:  po Local WIMP density

f(vmin,q) Radon transform of velocity dist.

Nuclear physics:

F(F) Nuclear form factor
my Nucleus mass
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Directional detection

= Radon transform of WIMP velocity distribution,
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= at the smallest speed that can cause a recoil of energy, F
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= Lab frame distribution = boost of Galactic frame distribution

f(V) — fgal(v - Vlab)



Velocity distribution

= “Standard Halo Model” used ubiquitously in current data analysis
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= Radon transform of lab frame distribution
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More realistic distributions

» Evidence from simulations that distribution is not smooth or isotropic

= F.g. Via-Lactea2 analogue Earth distributions:
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More realistic distributions

= Avg. recoil signals from VL2 distributions over 10 kg yr exposure

= Distributions in energy, angle:

Re-scaled distributions
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= To detect broad changes in the model need > several thousand
events



Tidal streams

= Tidal stream from accretion of dark matter from satellite galaxy

= Full distribution = Background halo + Stream

Background halo dispersion ~ 200 km /s
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Stream fraction ~10% \

Stream dispersion ~10 km /s

Galactic frame stream velocity
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Detecting streams

# events
No stream

£=0

Stream

£ =0.1

1. Discriminate between smooth halo and halo with substructure

2. Measure properties of stream (density, velocity, dispersion)



1. Discriminate between isotropic halo and halo with substructure

Detecting streams: results

* Non-parametric tests (median direction, rotational symmetry)
* Need > 30 kg yr exposure to detect at 95% confidence
e Favours fast streams and streams aligned at 90 degrees to solar

motion
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Detecting streams: results

2. Measure properties of stream (density, velocity, dispersion)

e Bayesian parameter reconstruction, profile likelihood ratio test
e Discriminate between isotropic halo and stream at 95% level
with 5 kg yr, and achieve correct parameter reconstruction
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Other forms of substructure

= Streams highly spatially and kinematically localised hence
(relatively) easy to detect

= Other forms of substructure, e.g. dark disc, debris flow, harder to
detect



Neutrino backgrounds

= Neutrino-nucleus scattering an irreducible background

= Solar, atmospheric, supernovae, reactor ...
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Neutrino backgrounds
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Summary

Directional detection provides unambiguous evidence for signal of
galactic origin

Can probe local velocity distribution
Streams may be observed with long exposures or scaled up detectors

However, detectability dependent on orientation of substructure with
respect to Earth's motion

Directional detection capable of probing below the neutrino floor
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