

“Axiostromony”

How to build an axion observatory

Ciaran O’Hare
Universidad de Zaragoza, España

Outline

- Terrestrial dark matter “astronomy”
- Example 1: WIMP directional detectors
- Example 2: Axion haloscopes
 - Non-directional axioastronomy
 - Directional axioastronomy

Local dark matter distribution

1. Dark matter density ($r = 8$ kpc)

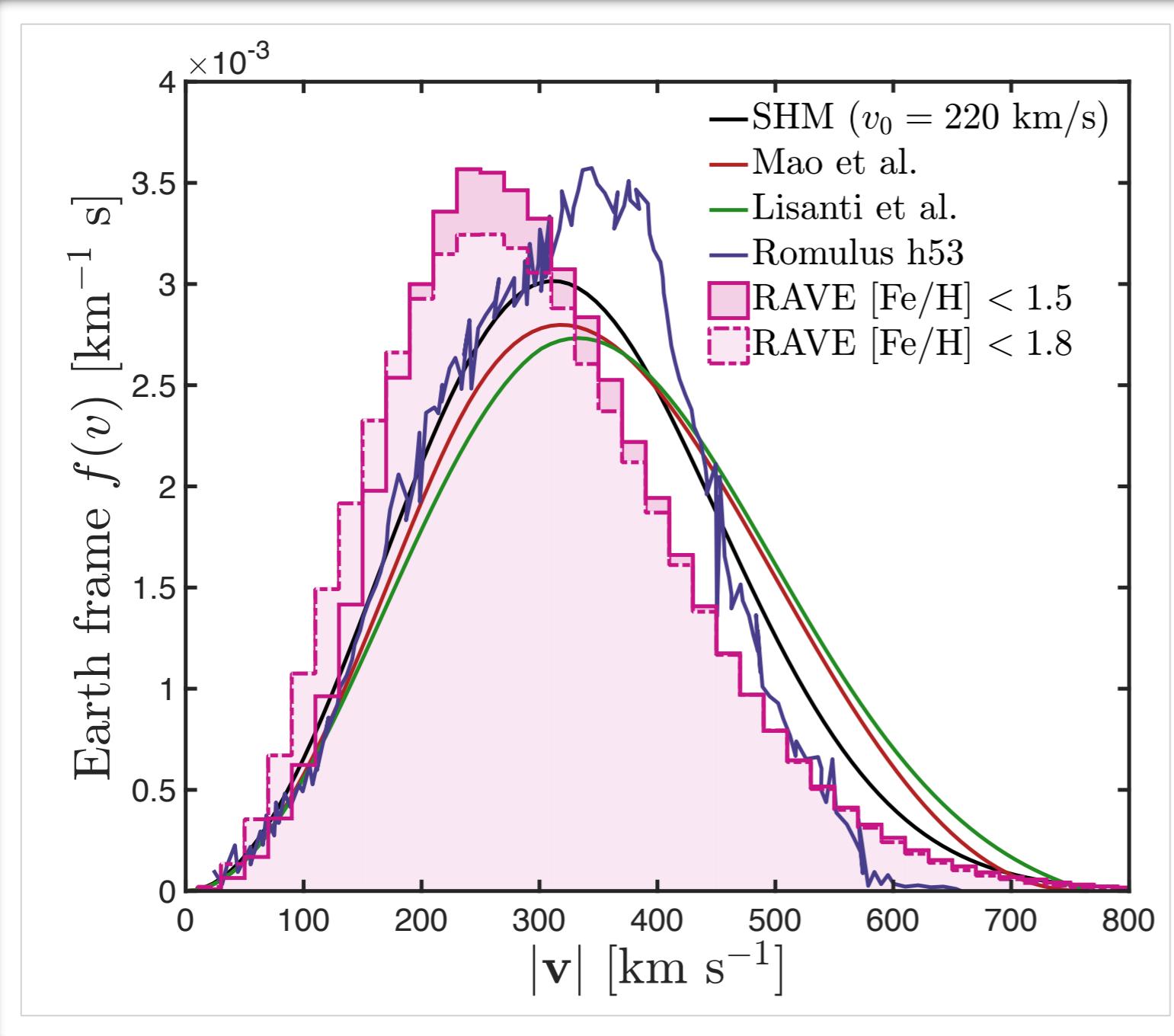
$$\rho_0 = \sum_{\text{DM species}} \rho_i \approx 0.4 \text{ GeV cm}^{-3}$$

See J. I. Read [1404.1938]

2. Dark matter velocity distribution

$$dn = d^3v \sum_{\text{DM species}} \frac{\rho_i}{m_i} f_i(\mathbf{v}) \approx ?$$

Determining $f(v)$



- **Observationally:**
Herzog-Arbeitman+ [1708.03635] (stellar kinematics)

- **Using models:**
Standard halo model (SHM)
Mao+ [1210.2721] (fitting function)
Lisanti+ [1010.4300] (fitting function)
Kavanagh+ [1609.08630] (general polynomial)

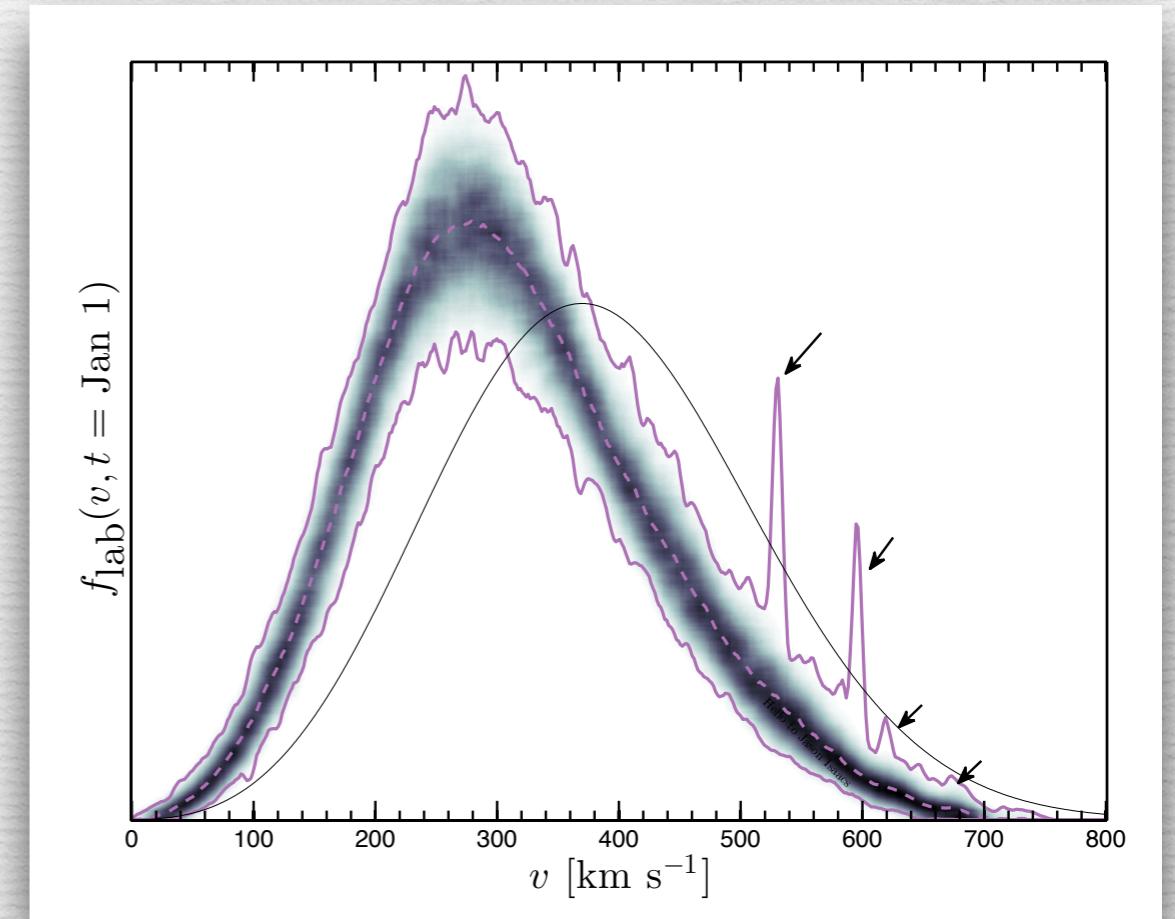
- **From simulations:**
Bozorgnia [1705.05853] (WIMP-motivated)
Lentz+ [1703.06937] (axion-motivated)

Substructure

Hierarchical galaxy formation by merger and accretion *will* (and has) lead to substructure in the MW.

The questions are:

- Is there any nearby?
- Do we expect more/less substructure due to DM particle interactions?



Some possibilities:

- **Streams** (from dwarf galaxies) Purcell+ [1203.6617]
- **Debris flows** Kuhlen+ [1202.0007]
- **Shadow bar** Petersen+ [1602.04826]
- **Dark disk** Schaller+ [1605.02770]
- **Miniclusters** Kolb & Tkachev+ [hep-ph/9303313]
- **Ministreams** (from miniclusters) Dokuchaev+ [1710.09586]

Dark matter “astronomy”

Terrestrial measurement of $f(v)$ with a dark matter experiment

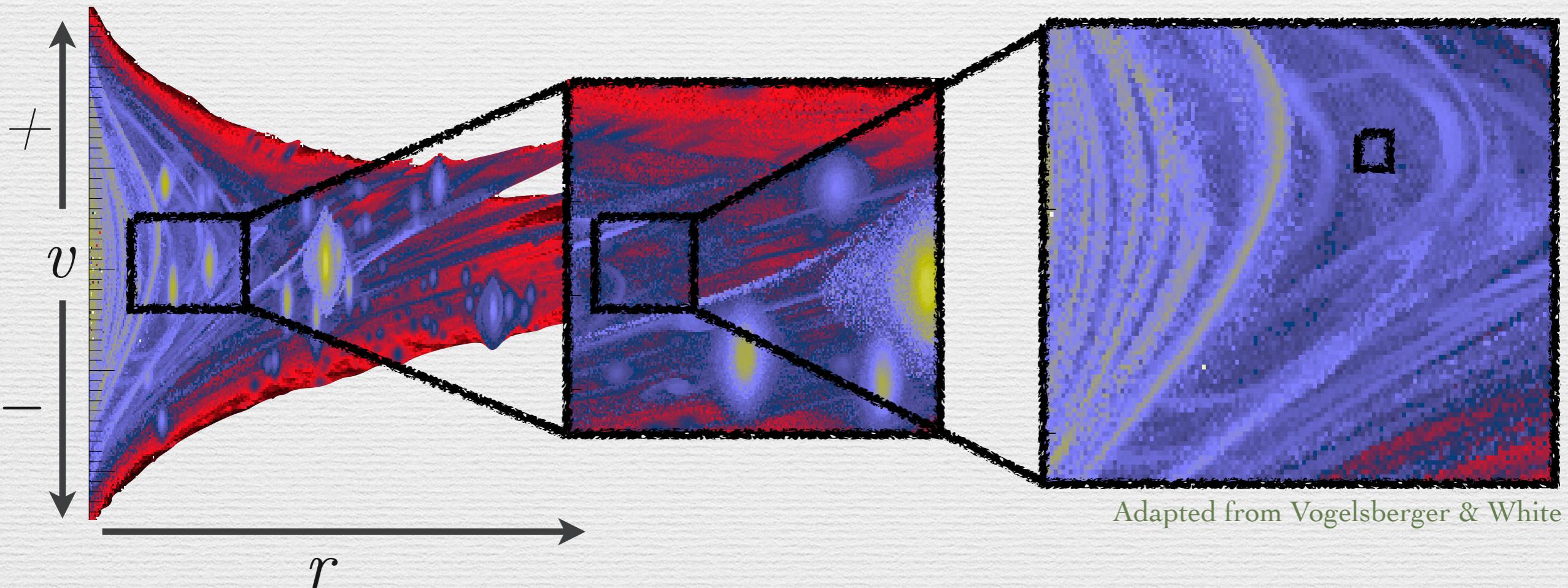
Why?

- *Only* way to resolve astro. uncertainties on DM signal
- *Only* way to probe local halo on Solar System scale
- Galacto-archaeology of MW
- Information about cosmological production of DM

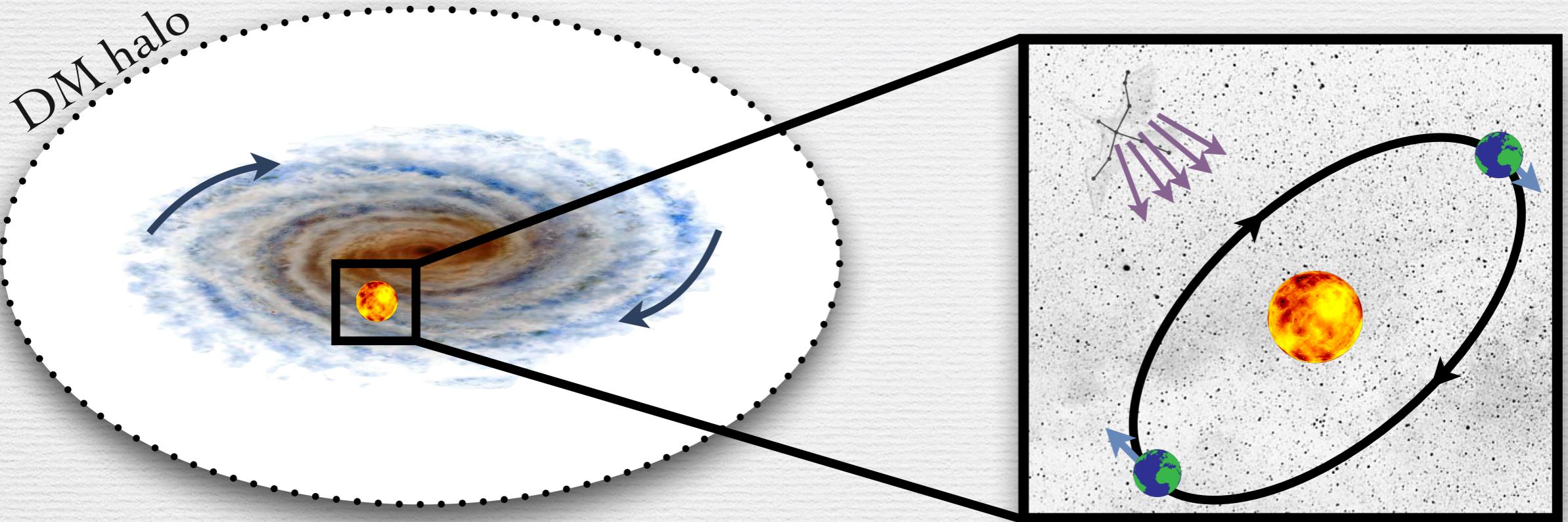
Example 1: WIMPs

WIMPs are vanilla thermally produced CDM

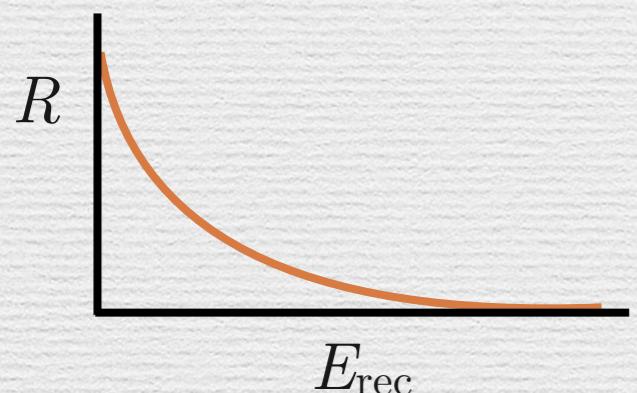
- Subhalos down to \sim Earth mass [Green+ \[astro-ph/0503387\]](#)
- No ultralocal structure (< milli pc) [Vogelsberger+ \[1002.3162\]](#)
- Possible tidal stream (Sgt. stream) [Purcell+ \[1203.6617\]](#)
- Unlikely dark disk [Schutz+ \[1711.03103\]](#)



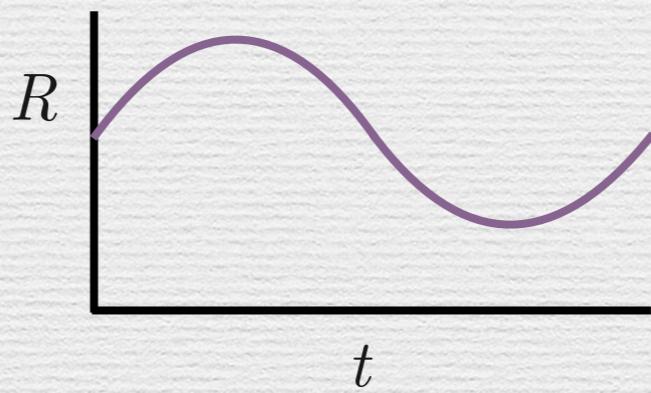
WIMP signals



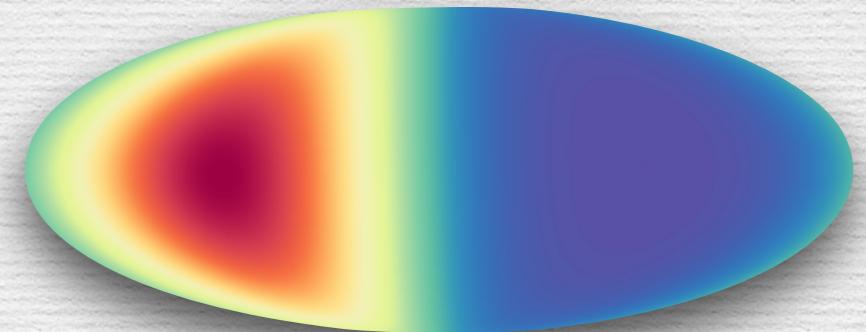
1. **~keV nuclear recoils**
(rate/energy)



2. **Annual modulation**
(rate/energy-time)

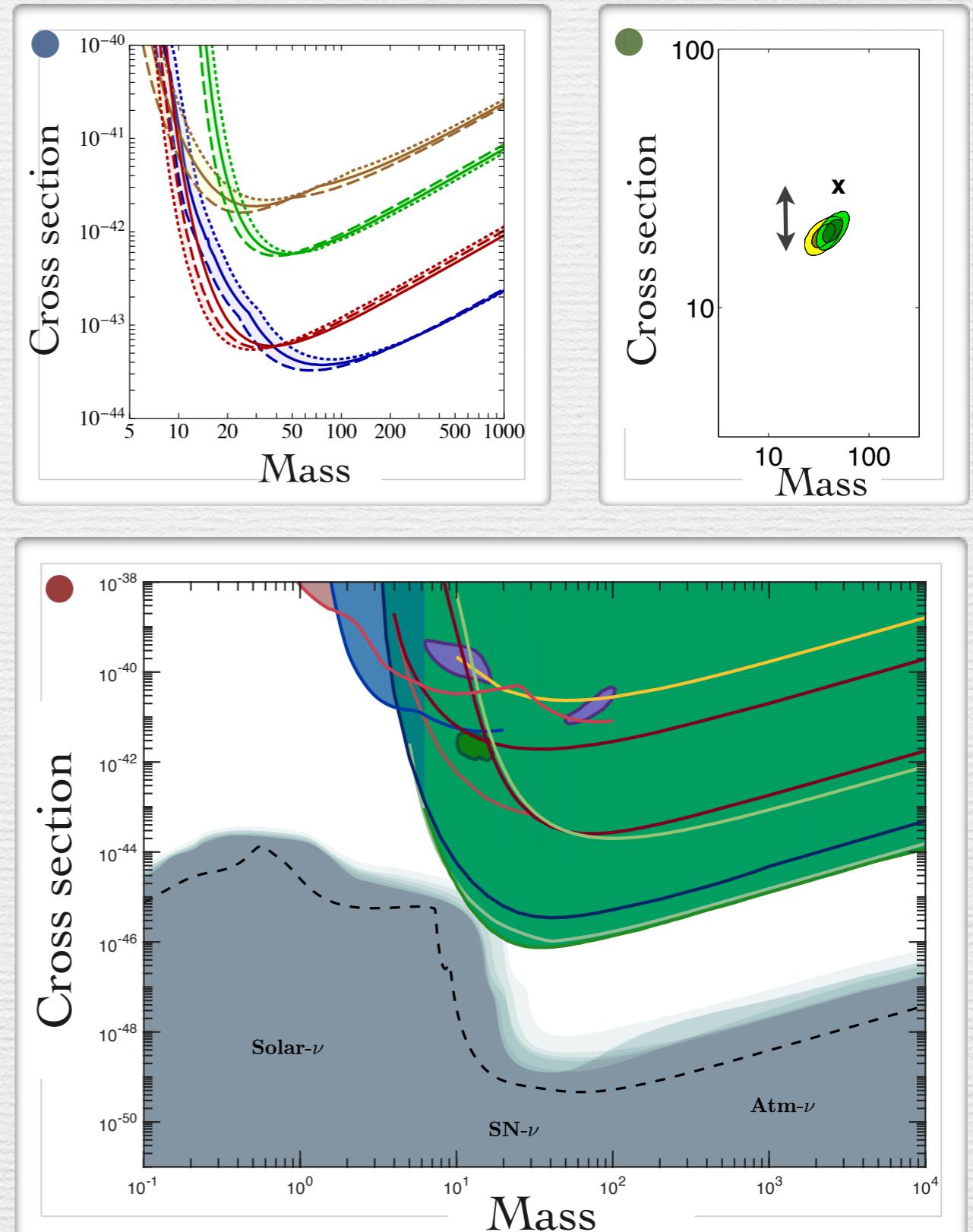


3. **Lab frame anisotropy**
(rate/energy-time-direction)



WIMPs: astrophysical uncertainties

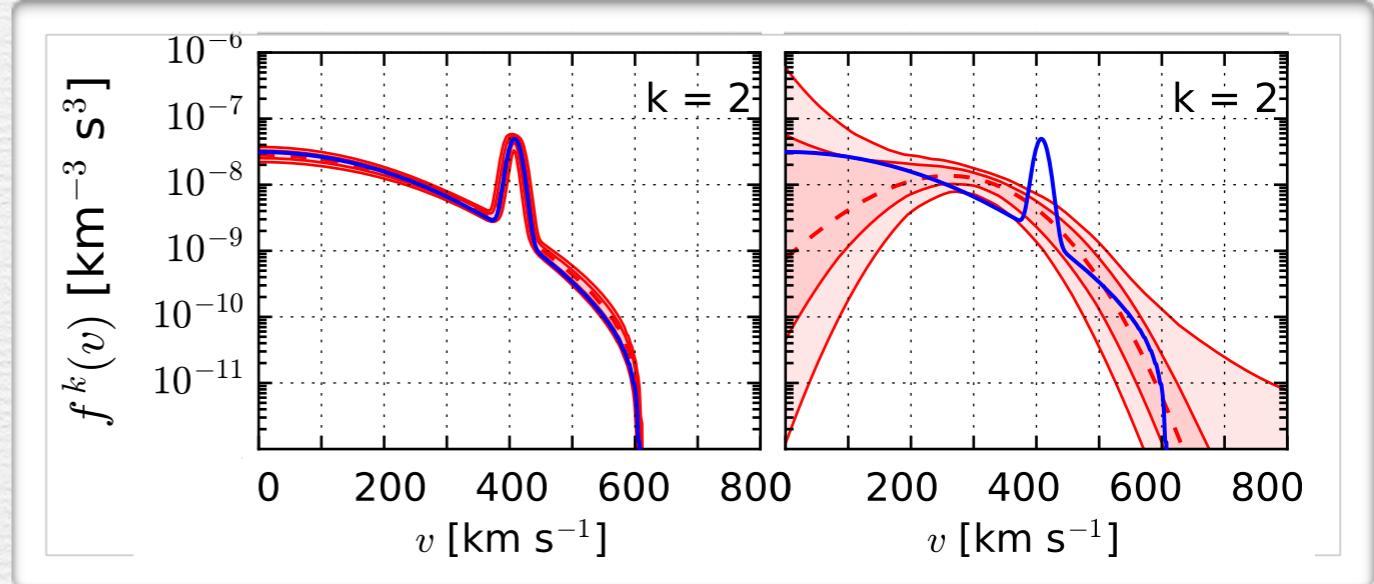
- Uncertainty in exclusion limits
e.g. McCabe [1005.0579]
“*What have I ruled out?*”
- Biased parameter estimation
e.g. Peter [1103.5145]
“*What have I measured?*”
- Neutrino floor
e.g. O’Hare [1505.08061]
“*Does my background mimic a signal?*”



Directional detection

- Reconstruct full 3-d velocity distribution

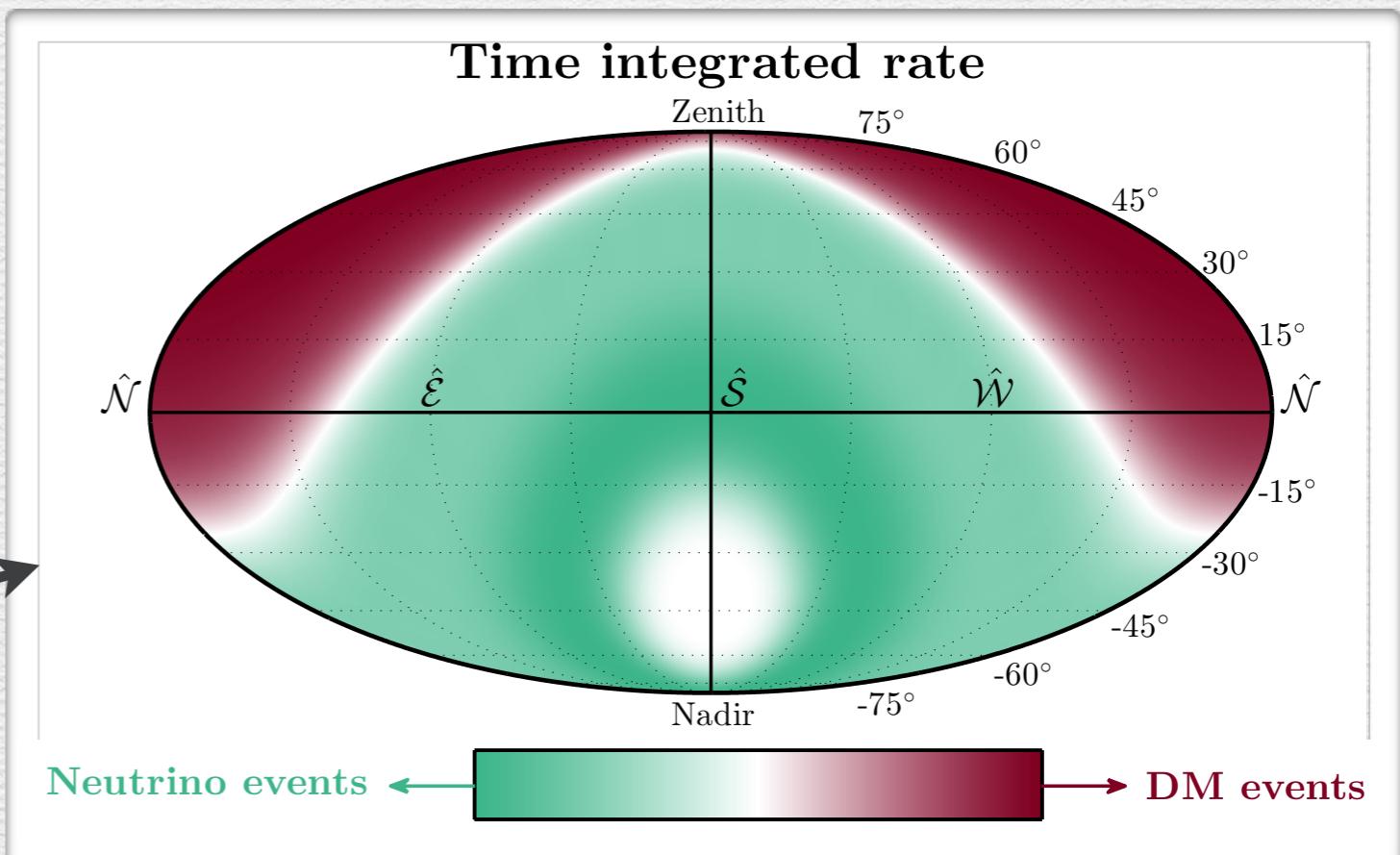
Kavanagh & O'Hare [1609.08630]

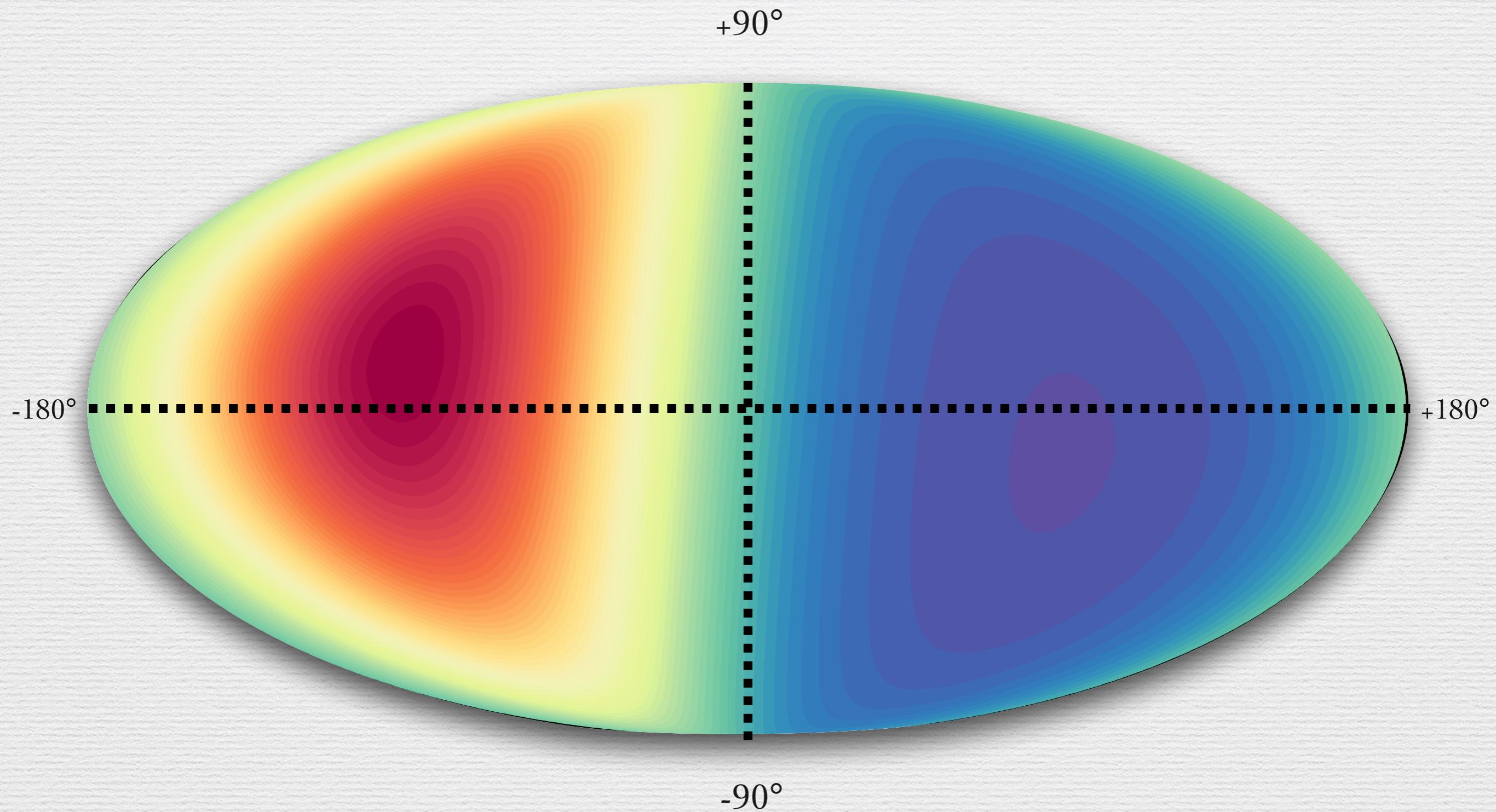


- Subtraction of neutrino background

O'Hare+ [1505.08061]

O'Hare+ [1708.02959]



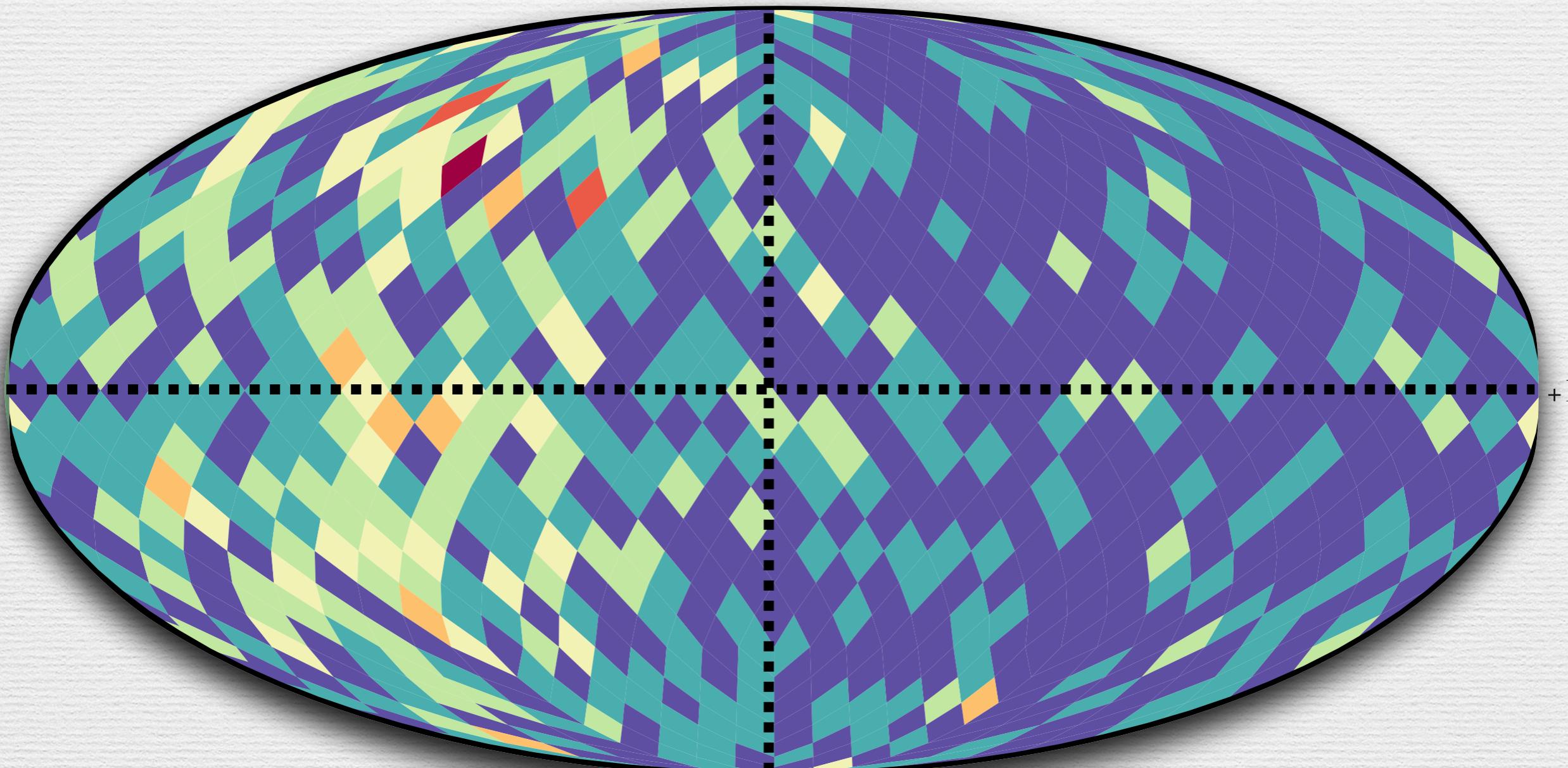


+90°

-180°

+180°

-90°



Directional detectors

Disadvantages (gas TPCs):

- ✗ Hard to reconstruct complete recoil directions
- ✗ Need to balance large target mass vs. accurate tracks
- ✗ Signals often disappear at low energies

Advantages:

- ✓ Confirmation of *Galactic* DM discovery
- ✓ Enhanced signal discrimination
- ✓ Exploration of DM *velocity* distribution

Axion astronomy

The local axion field

- Axion dark matter behaves as a classical field oscillating in (\mathbf{x}, t) , with modes ($\mathbf{p} = m_a \mathbf{v}$) that “explore” the astrophysical distribution:

$$a(\mathbf{x}, t) = \frac{\sqrt{2\rho_a}}{m_a} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |\mathcal{A}(\mathbf{p})| \cos(\omega t - \mathbf{p} \cdot \mathbf{x} + \alpha_{\mathbf{p}})$$

Axion power spectrum

- Define a “coherence” length and time, within which all modes of the field are in phase,

$$a(\mathbf{x}, t) \approx \frac{\sqrt{2\rho_a}}{m_a} \cos(\omega t - \mathbf{p} \cdot \mathbf{x} + \alpha)$$

Axion dark matter

- If we measure the field over time/length scales larger than those that dephase the tail of the axion oscillations we effectively measure the distribution of modes

> coherence time:

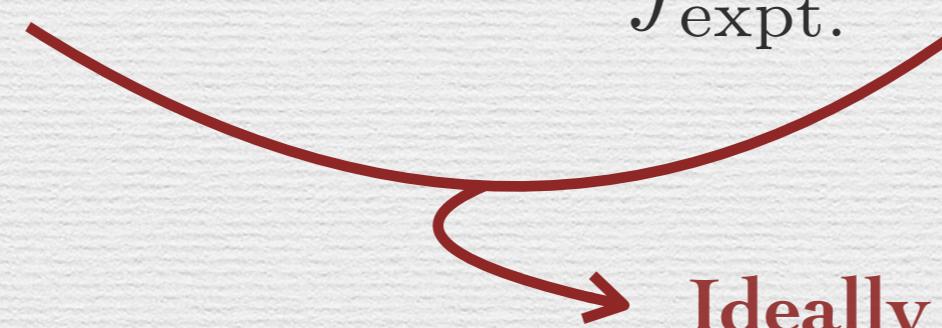
$$\tau_a = \frac{2\pi}{m_a \langle v \rangle^2} \simeq 40 \mu\text{s} \left(\frac{100 \mu\text{eV}}{m_a} \right)$$

> coherence length

$$\lambda_a = \frac{2\pi}{m_a \langle v \rangle} \simeq 12.4 \text{ m} \left(\frac{100 \mu\text{eV}}{m_a} \right)$$

1. Frequency of photons
→ Axion speeds

$$|\mathcal{A}(\omega)|^2 \propto f(v)$$



2. Coherence loss across experiment
→ Axion directions (weighted by geometry)

$$\int_{\text{expt.}} |\mathcal{A}(\mathbf{p})|^2 \rightarrow \int d\Omega_v \mathcal{G}(\mathbf{v}) f(\mathbf{v})$$

Ideally we measure both effects

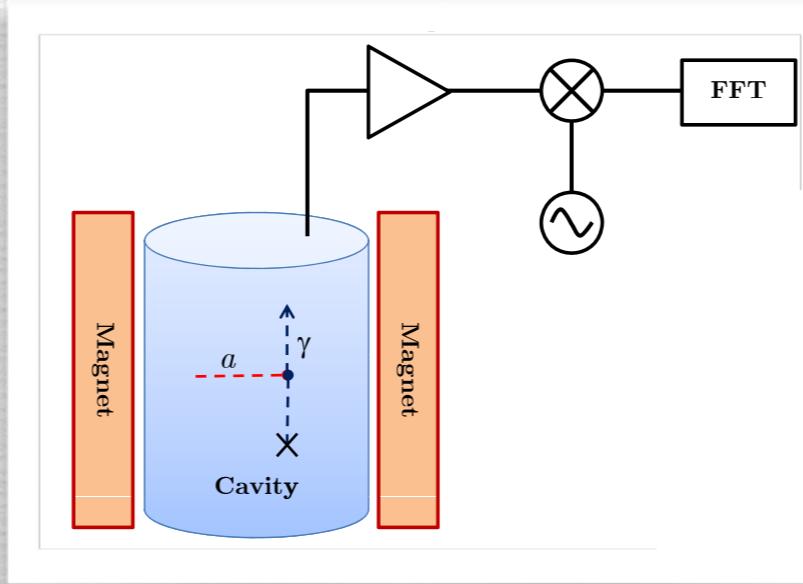
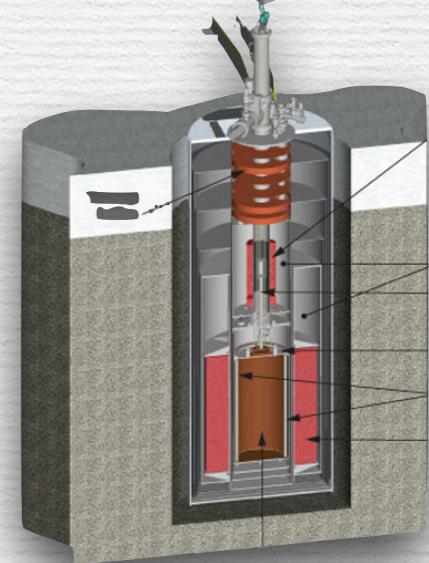
(1) couple axion oscillation to the resonant mode of a cavity

ADMX

[0910.5914]

HAYSTAC

[1611.07123]



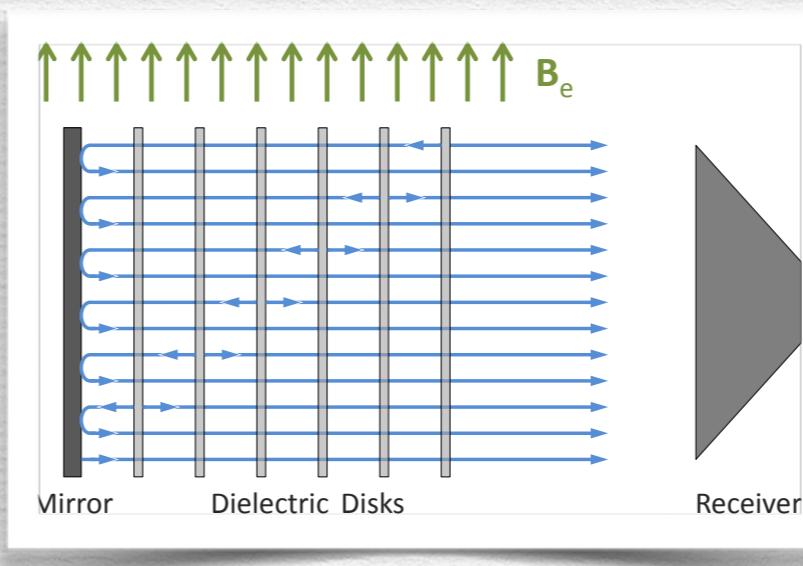
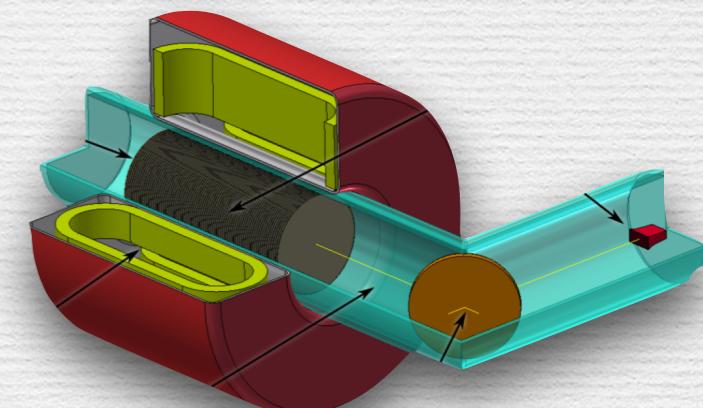
(2) generation of EM waves at magnetised boundaries

MADMAX

[1611.05865]

BRASS

[citation needed!]



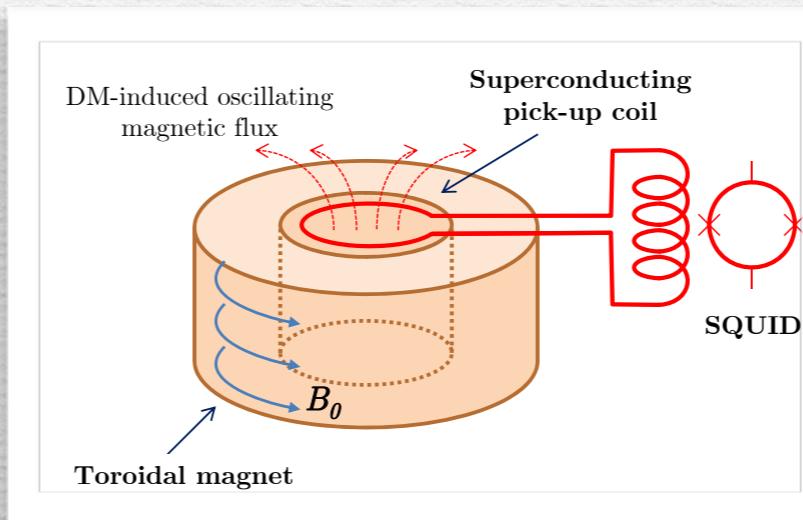
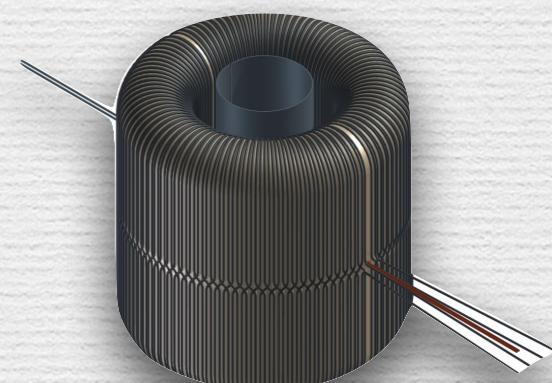
(3) Axion-induced electric currents

DM-Radio

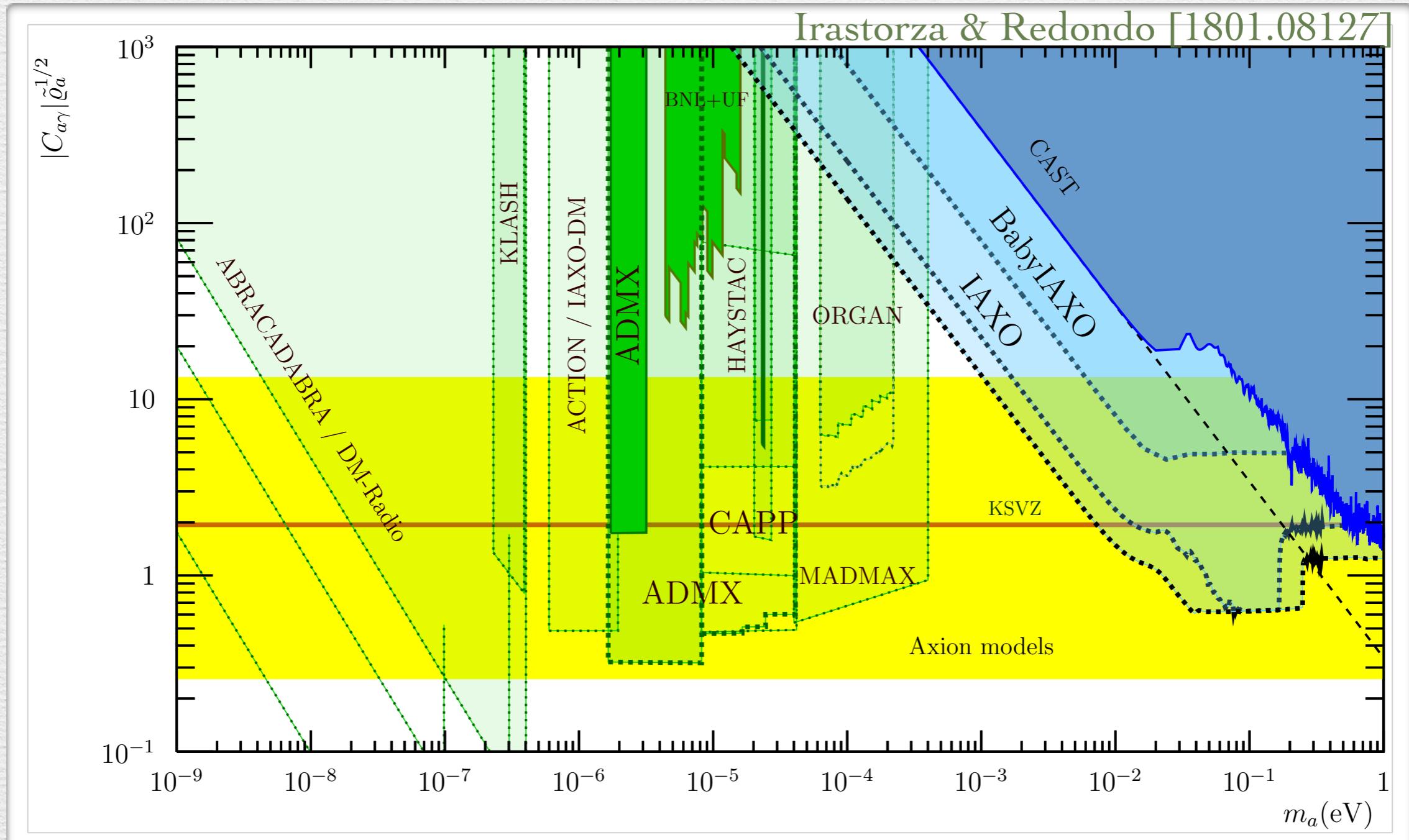
[1610.09344]

ABRACADABRA

[1711.10489]



Haloscopes



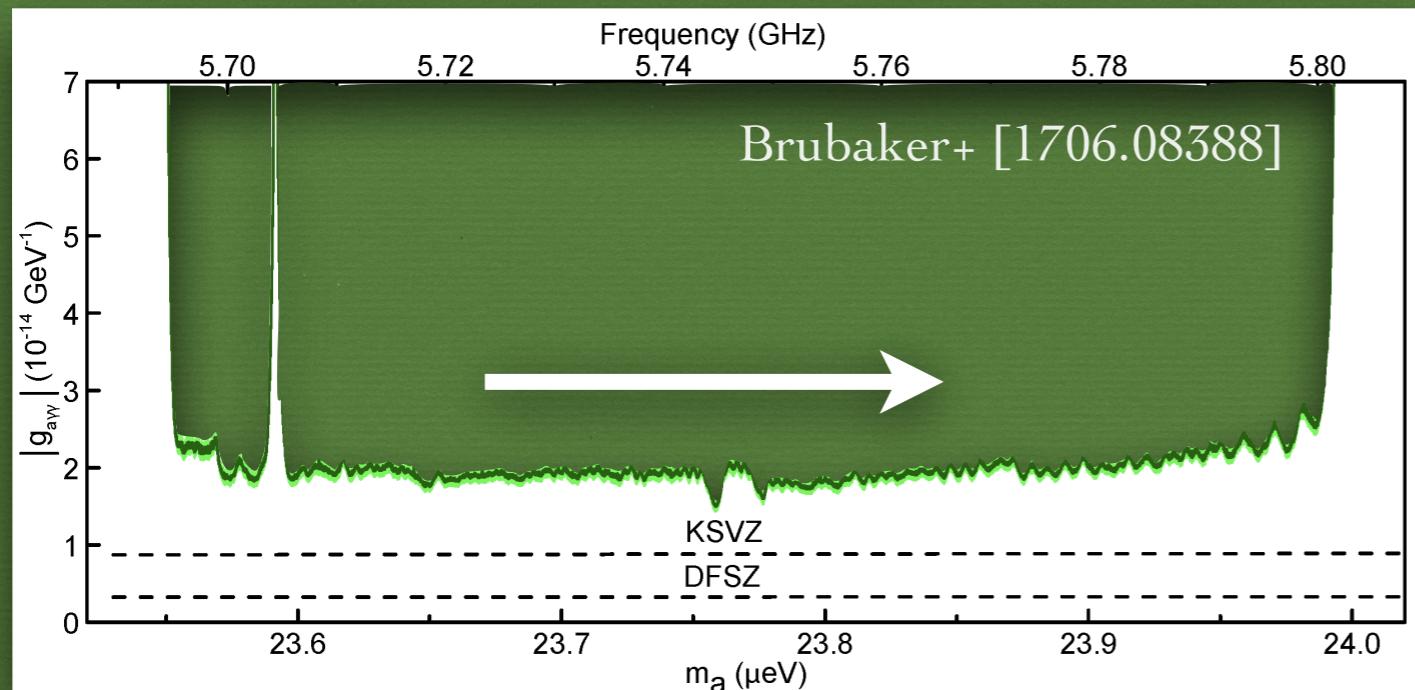
$$\left(C_{a\gamma} = \frac{2\pi f_a g_{a\gamma}}{\alpha} \right)$$

$$\lambda_a$$

Axion search storyboard

Step 1: Axion search

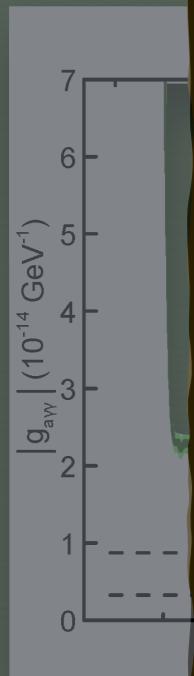
for a given resonant freq. measure power extracted from cavity over bandwidth. Then move the resonant frequency and try again



Axion search storyboard

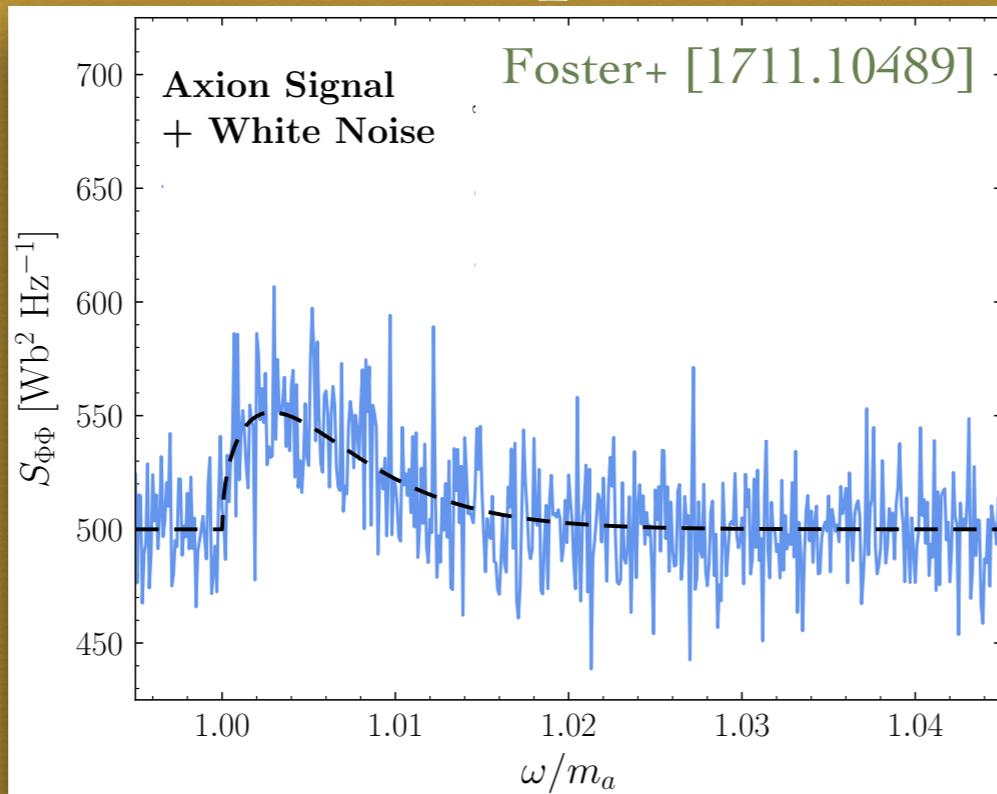
Step 1: Axion search

for
pov
bar
res



Step 2: Axion signal

Once resonance is found, Fourier transform signal timestream to measure axion spectrum

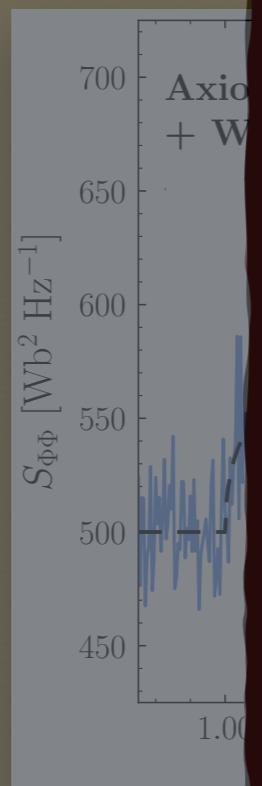


Axion search storyboard

Step 1: Axion search

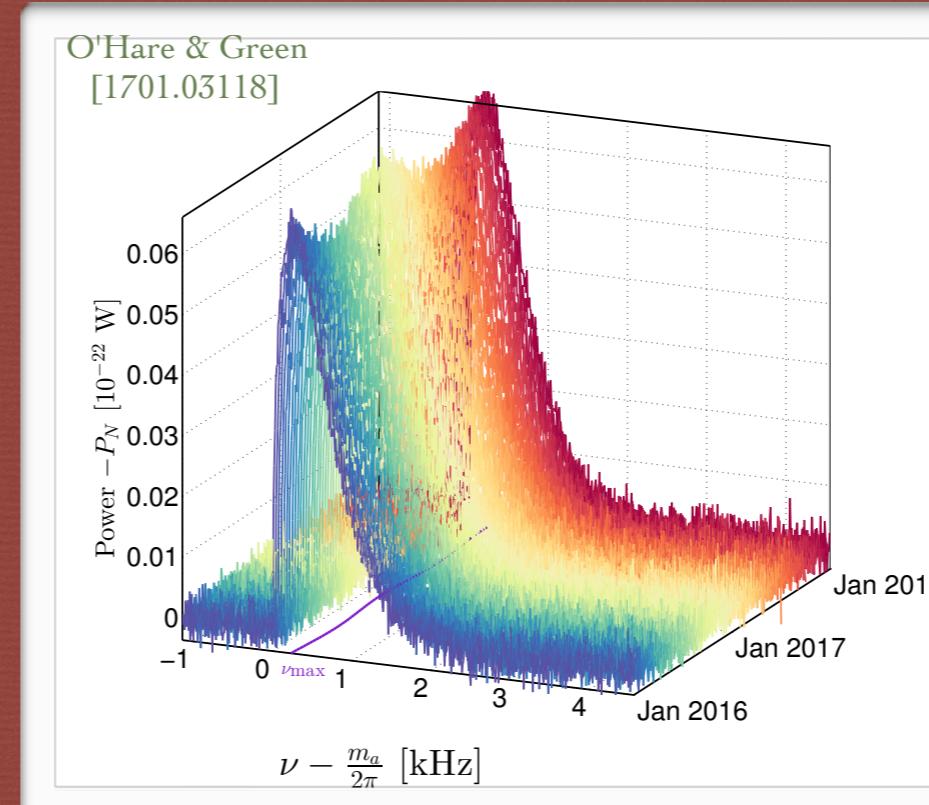
for
pow
bar
res

Once res
transform
measure



Step 2: Axion signal

Step 3: Modulation
Repeat experiment to measure
phase of annual modulation
→ confirmation of DM signal



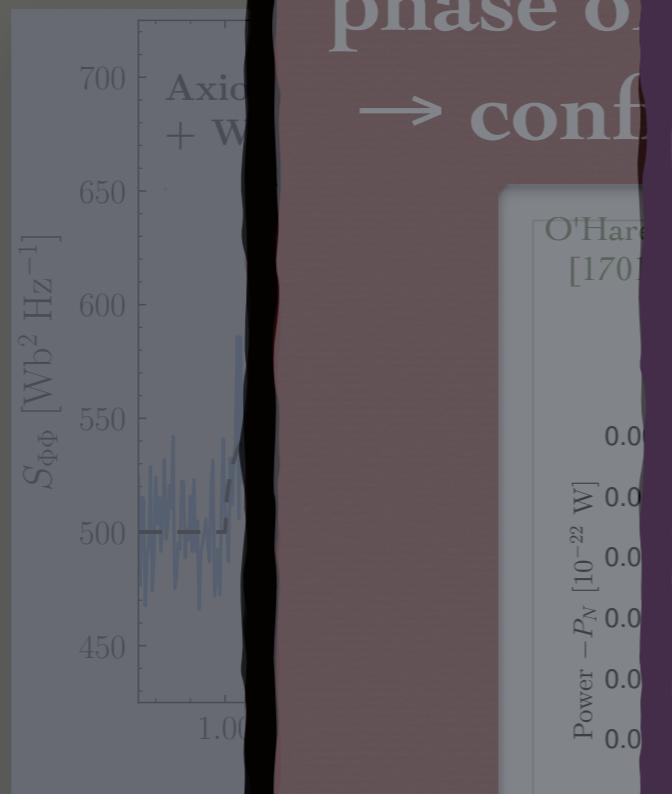
Axion search storyboard

Step 1: Axion search

for
po
ba
res

Step 2: Axion signal

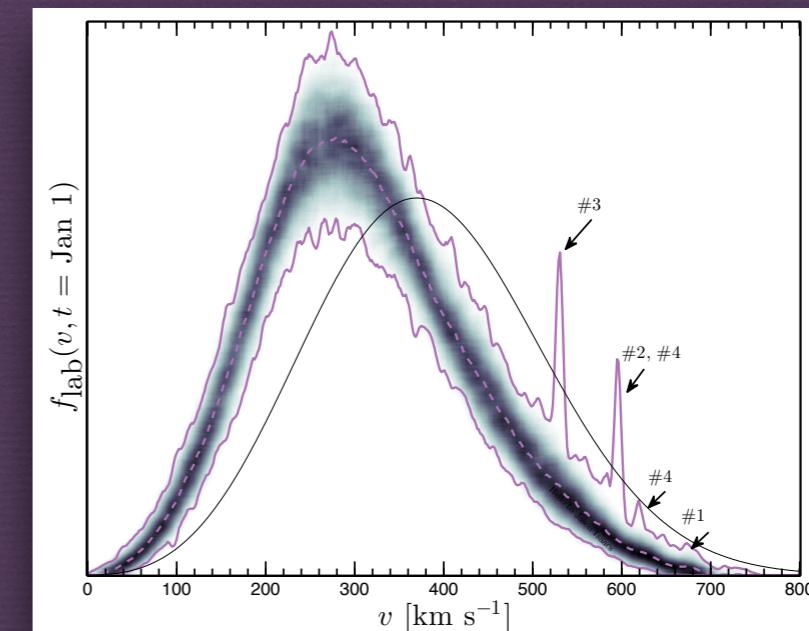
Once res
transform
measure



Repeat
phase o
→ conf

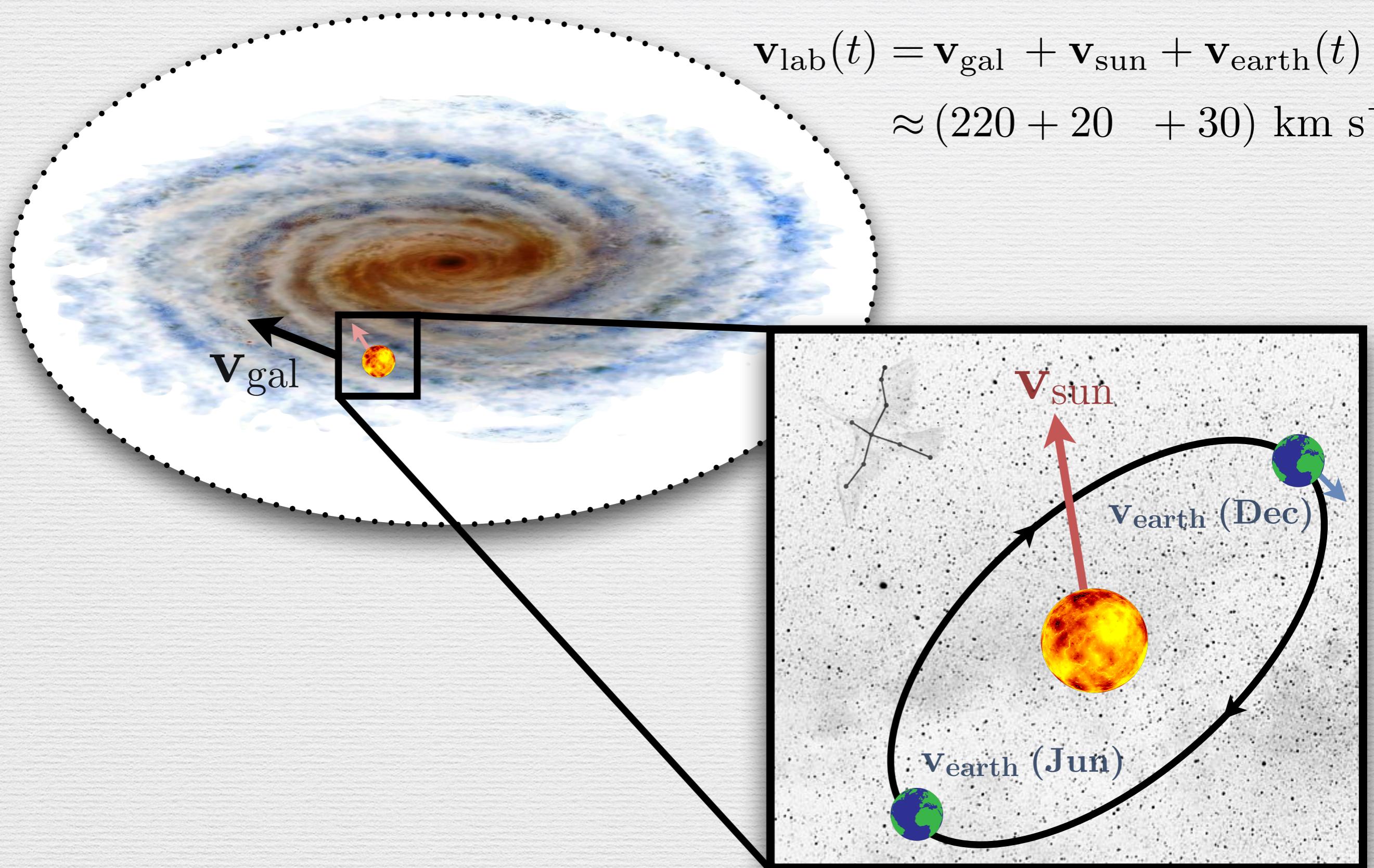
Step 3: Modulation

Step 4: Astronomy
Build specialised detectors,
exploit directional dependence,
measure features in
distribution...



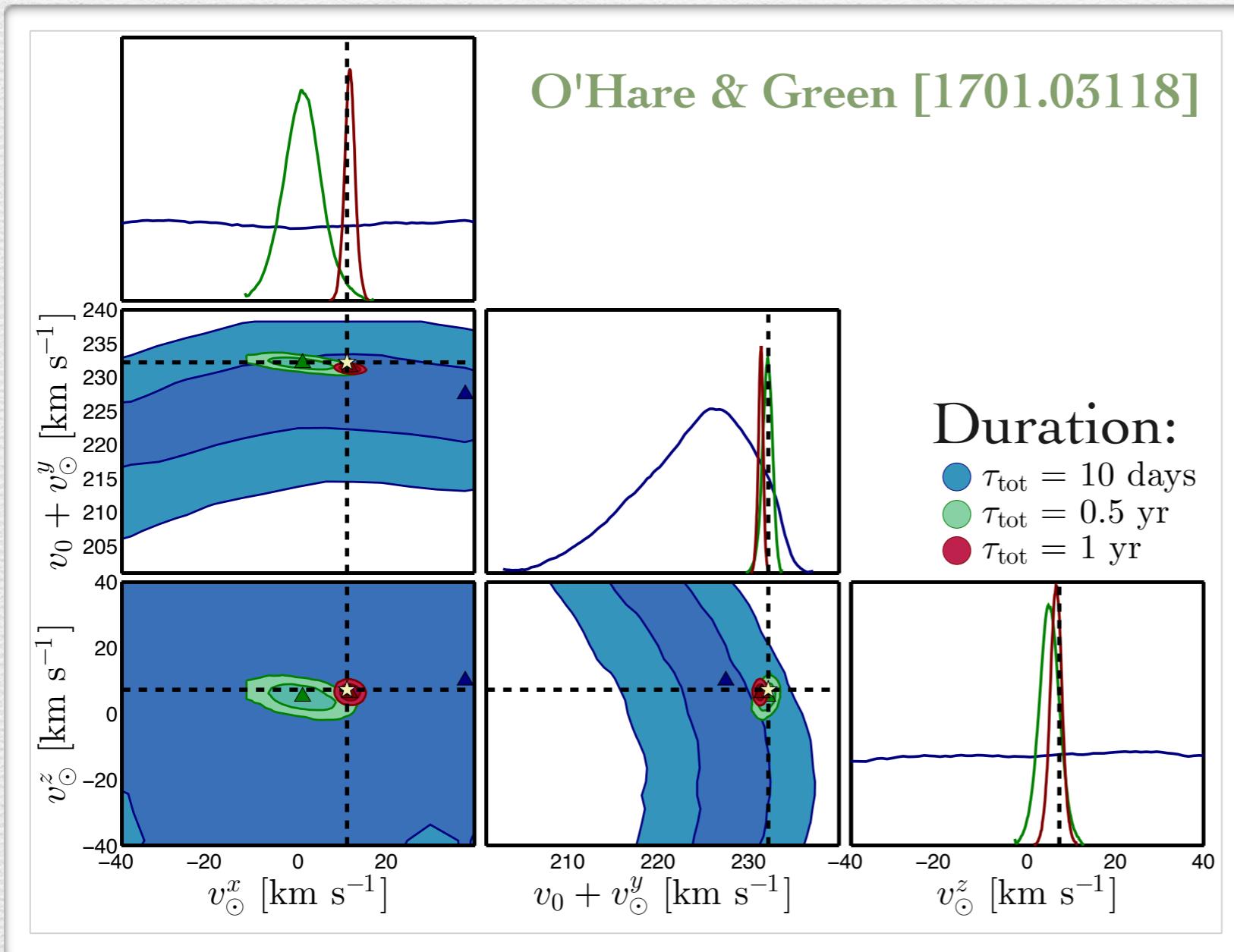
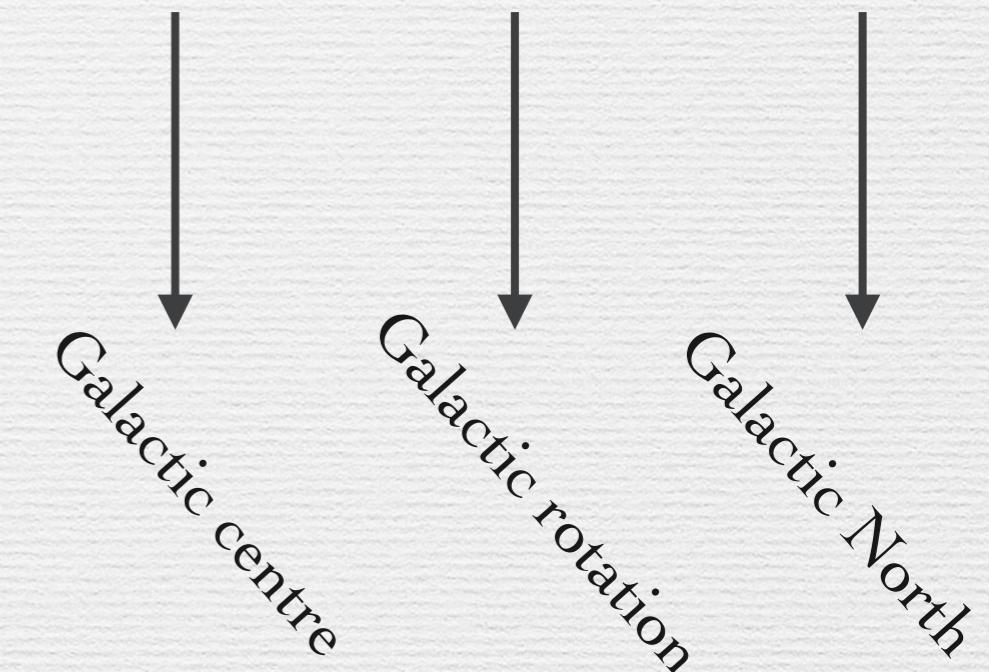
Axion astronomy: Measuring the lab velocity

$$\mathbf{v}_{\text{lab}}(t) = \mathbf{v}_{\text{gal}} + \mathbf{v}_{\text{sun}} + \mathbf{v}_{\text{earth}}(t)$$
$$\approx (220 + 20 + 30) \text{ km s}^{-1}$$



Axion astronomy

- Likelihood fit spectrum $\mathbf{v}_{\text{sun+gal}} = (v_{\odot}^x, v_0 + v_{\odot}^y, v_{\odot}^z)$ to astrophysical parameters

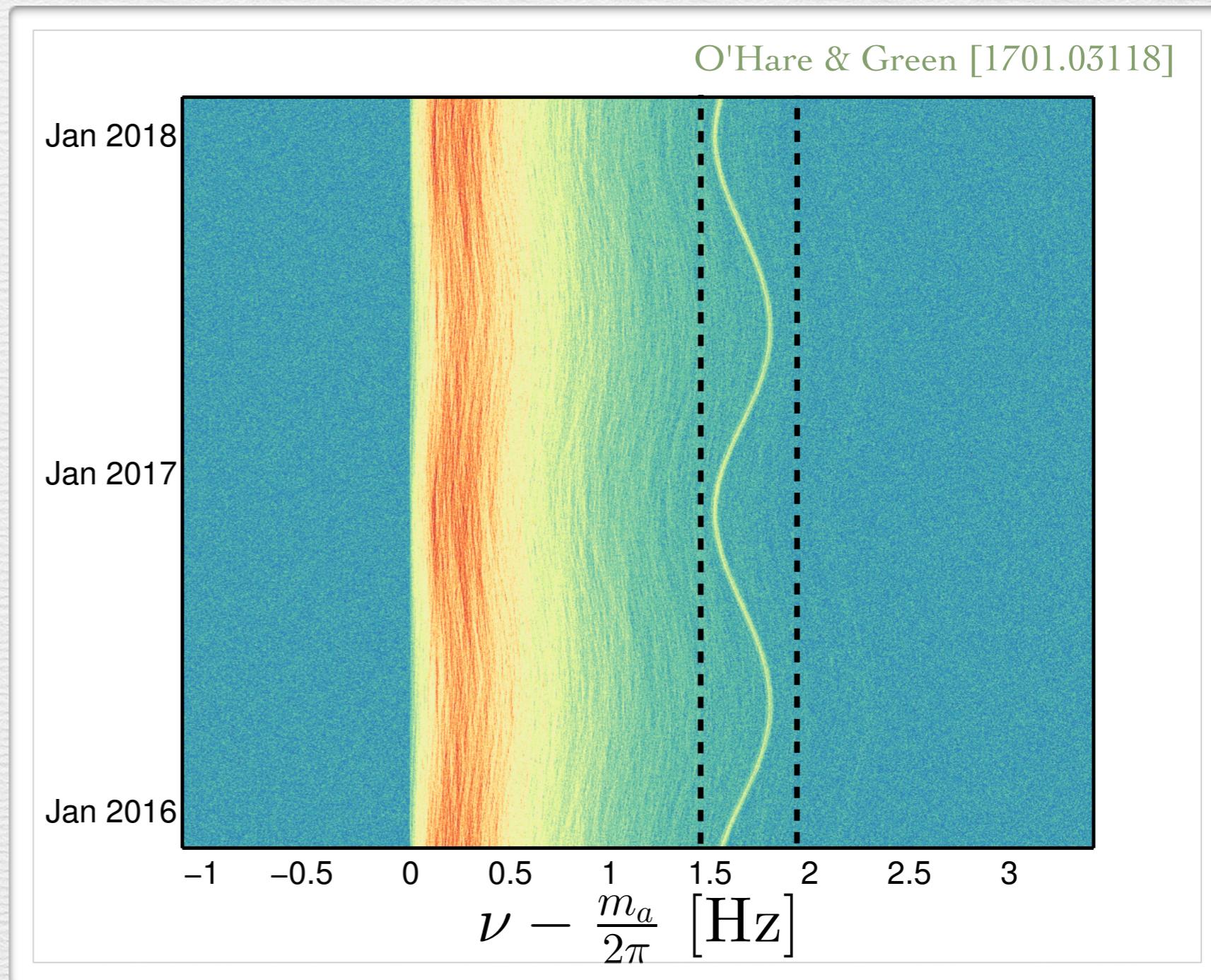


Astrometric uncertainty: $\sim 1 \text{ km/s}$
 Schoenrich+ [0912.3693]

Detecting Streams

- Modulations can be used to identify localised features by their unique phase, amplitude and frequency offset

Power spectrum
vs. time
from N-body
simulation



Miniclusters

Substructure for post-inflation scenario axionic DM

→ Collapsed overdensities of the axion field, formed from mass inside horizon when axion oscillations begin

$$\rho_{\text{mc}} \sim 10^6 \text{ GeV cm}^{-3}$$

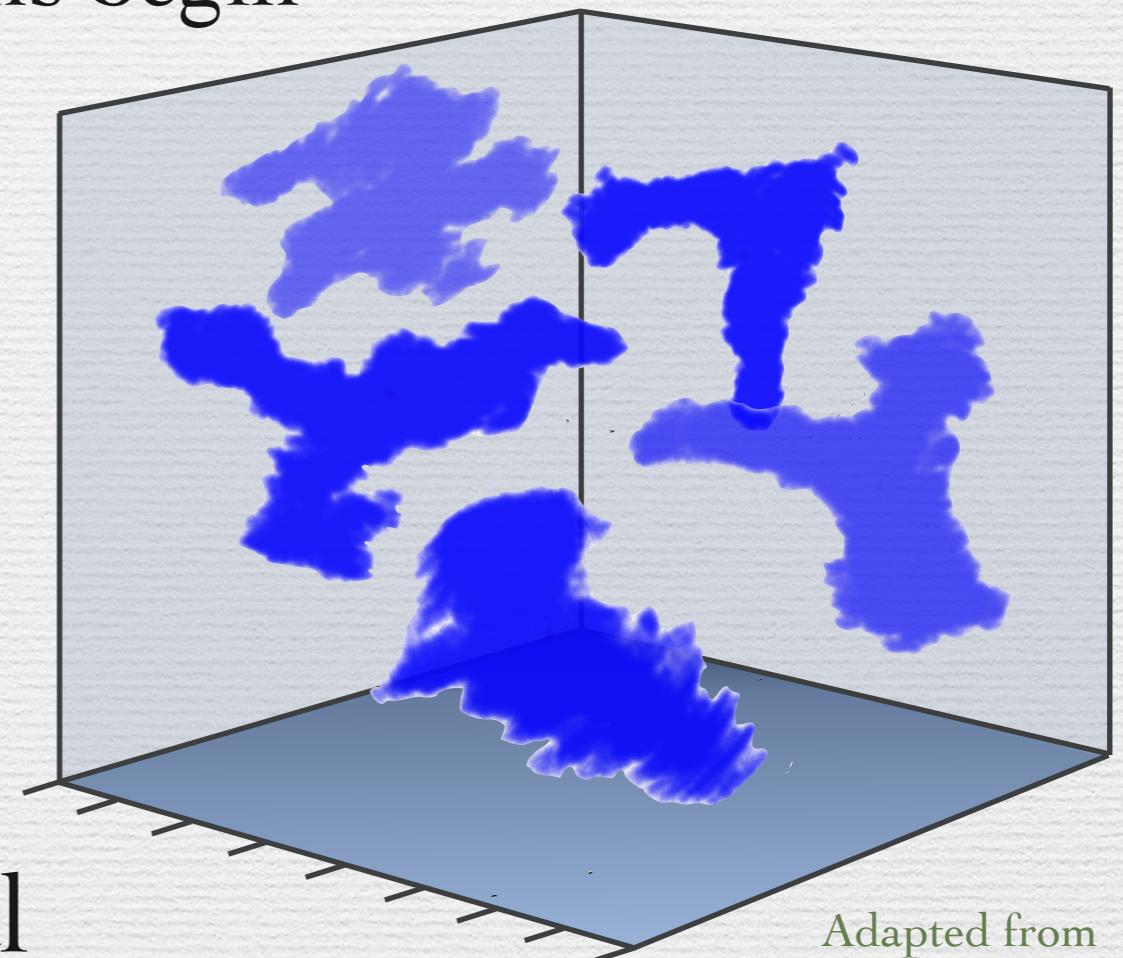
$$R_{\text{mc}} \sim 10^7 \text{ km} \sim 0.2 \text{ AU}$$

$$M_{\text{mc}} \sim 10^{-12} M_{\odot}$$

High density/low dispersion

→ sharp enhancement in signal

(but our encounter rate < 1 per 100,000 years)



Adapted from
Stadler & Redondo

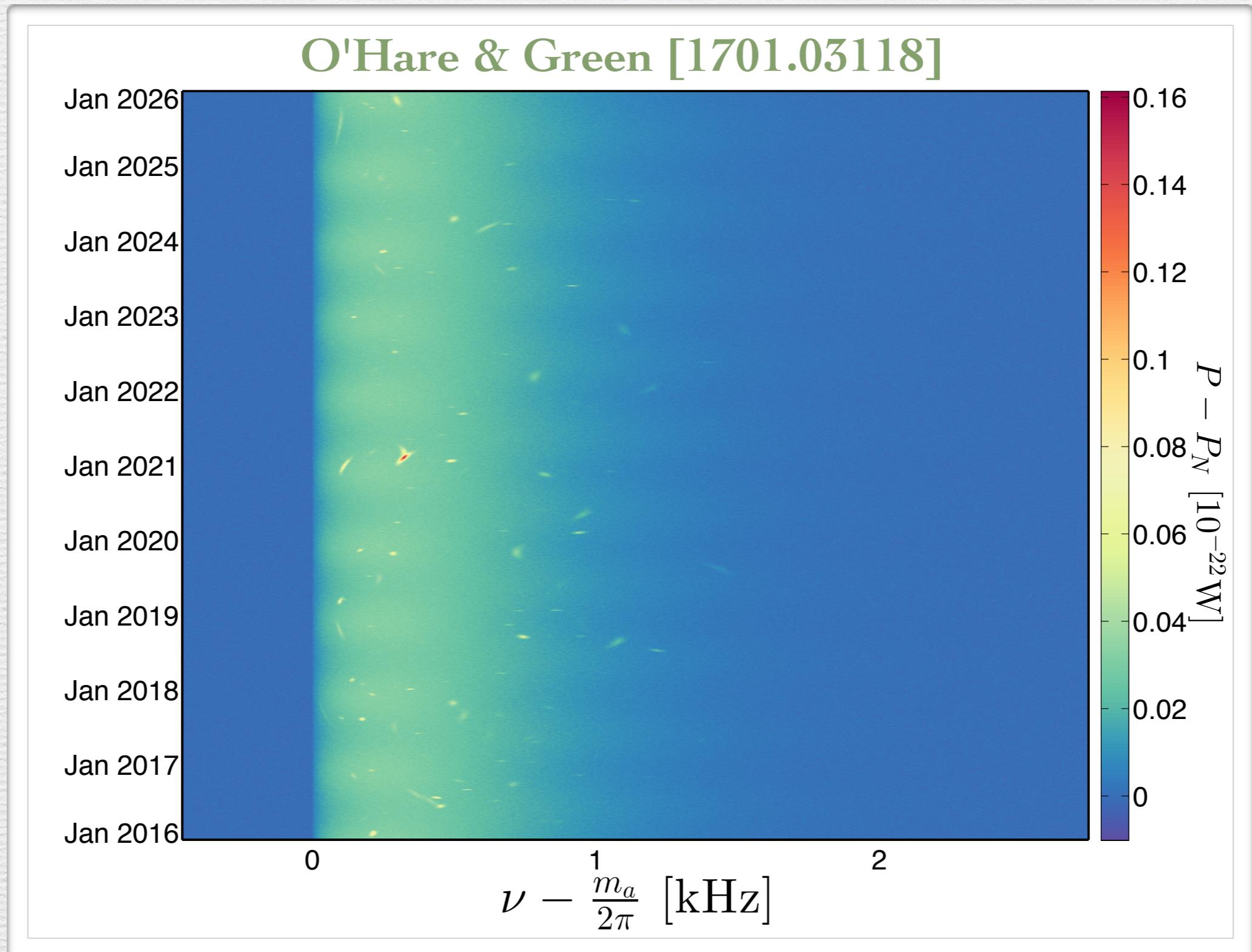
“Ministreams”

- Network of streams from mini clusters tidally disrupted by stars
- Could be more regular, giving temporary enhancements in signal

$$\tau_{\text{str}-x} = \frac{2R_{\text{mstr}}}{v_{\text{lab}} \sqrt{1 - \frac{\mathbf{v}_{\text{str}} \cdot \mathbf{v}_{\text{lab}}}{v_{\text{str}} v_{\text{lab}}}}}$$
$$\sim \mathcal{O}(\text{hours} - \text{days})$$

$$R_{\text{mstr}} \simeq \frac{0.23 \text{ AU}}{\delta(1 + \delta)^{1/3}} \left(\frac{M_{\text{mc}}}{10^{-12} M_{\odot}} \right)^{1/3}$$

“Ministreams”



A directional axion experiment?

A directional axion experiment?

- From “Maxiowell’s equations” one can derive

$$\ddot{\mathbf{E}} - \nabla^2 \mathbf{E} = -g_{a\gamma} \mathbf{B}_{\text{ext}} \ddot{a}$$

- Which has solutions (for electric field mode $i : \mathbf{E} = \sum E_i(t) \mathbf{e}_i(\mathbf{x})$)

$$\ddot{E}_i + \omega_i^2 E_i + \Gamma \dot{E}_i = -g_{a\gamma} \frac{1}{V} \int dV (\mathbf{e}_i \cdot \mathbf{B}_{\text{ext}}) \ddot{a}$$

First put in one axion wave: $a(\mathbf{x}, t) \sim a_0 e^{-i(\omega t + \mathbf{p} \cdot \mathbf{x})}$

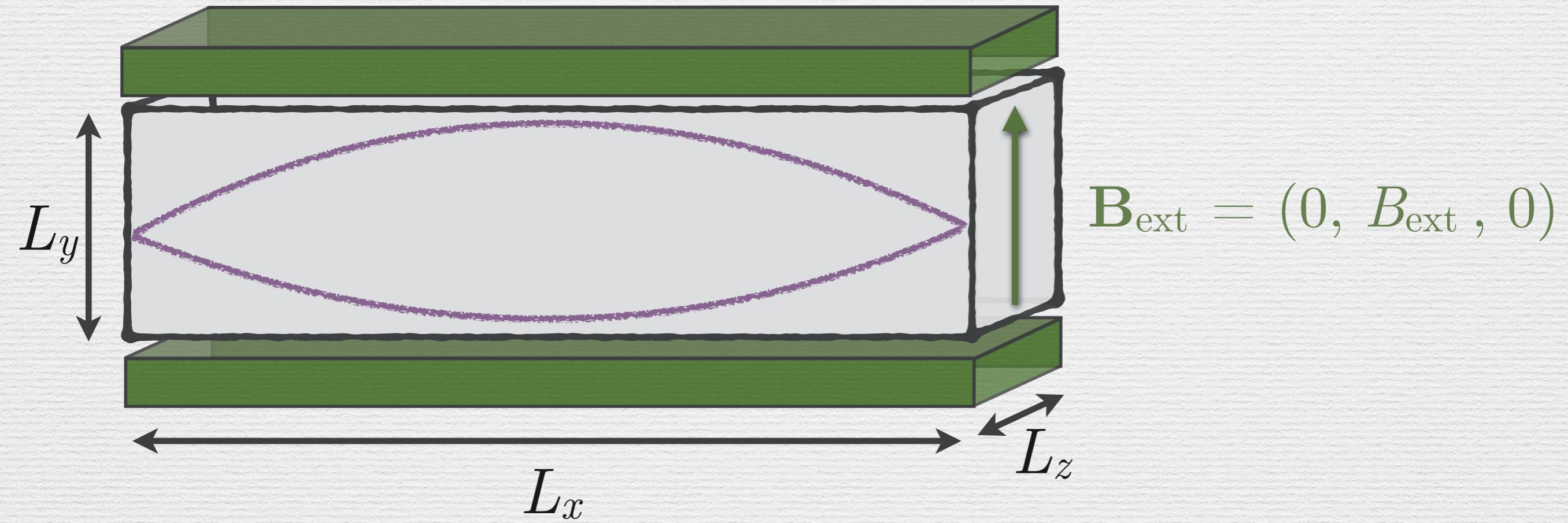
$$= -g_{a\gamma} B_{\text{ext}} C_i \omega^2 a_0 e^{i\omega t}$$

C_i = Cavity form factor

(integrates axion spatial distribution over the EM geometry of the expt)

Simple example: rectangular cavity

Lowest resonant mode: $\mathbf{e}_{101} = \left(0, 2 \sin\left(\frac{\pi x}{L_x}\right) \sin\left(\frac{\pi z}{L_z}\right), 0 \right)$



Form factor for axion wave of momentum $\mathbf{p} = m_a \mathbf{v}$

$$\rightarrow C = \frac{1}{V B_{\text{ext}}} \int dV \mathbf{e}_i \cdot \mathbf{B}_{\text{ext}} e^{i \mathbf{p} \cdot \mathbf{x}}$$

Rectangular cavity

In the zero velocity limit we have the usual form factor

$$|C|^2 = \left| \frac{1}{VB_{\text{ext}}} \int_V dV \mathbf{e}_{101} \cdot \mathbf{B}_{\text{ext}} \right|^2 = \frac{64}{\pi^2} \equiv C_0$$

Now including the axion velocity,

$$\begin{aligned} |C|^2 &= \frac{64}{\pi^4} [1 + m_a^2(g_x v_x^2 + g_y v_y^2 + g_z v_z^2)] \\ &= C_0(1 + \mathcal{G}(\omega, \mathbf{v})) \end{aligned}$$

“Geometry factor”

$$|C|^2 = 0.66 - 0.033 \left(\frac{m_a}{100 \mu\text{eV}} \right)^2 \left(\frac{L}{10 \text{ m}} \right)^2 \left(\frac{v}{300 \text{ km s}^{-1}} \right)^2$$

Signal from axion distribution

Axion field $a(\mathbf{x}, t)$ oscillates with modes distribution $f(\mathbf{v}; t)$
→ Integrate over velocities to get signal power vs. freq.:

$$\frac{dP}{d\omega}(t) = P_0 \mathcal{T}(\omega) \frac{dv}{d\omega} \left(f(v; t) + \int d\Omega_v v^2 \mathcal{G}(\omega, \hat{\mathbf{v}}) f(\omega, \hat{\mathbf{v}}; t) \right)$$

Diagram illustrating the components of the signal power:

- Total power on-resonance** (black arrow): Points to the term $f(v; t)$.
- Mode lineshape** (black arrow): Points to the term $\int d\Omega_v v^2 \mathcal{G}(\omega, \hat{\mathbf{v}}) f(\omega, \hat{\mathbf{v}}; t)$.
- Non-directional speed effect due to**
 $\omega = m_a \left(1 + \frac{v^2}{2} + \dots \right)$ (black arrow): Points to the term $\frac{dv}{d\omega}$.
- Directional velocity effect due to geometry** (red arrow): Points to the term $\mathcal{T}(\omega)$.
- orientation-dependent** (red text): Describes the directional effect.
- time-dependent** (red text): Describes the time-dependence of the effect.

Full velocity sensitivity

- General formalism would look something like:

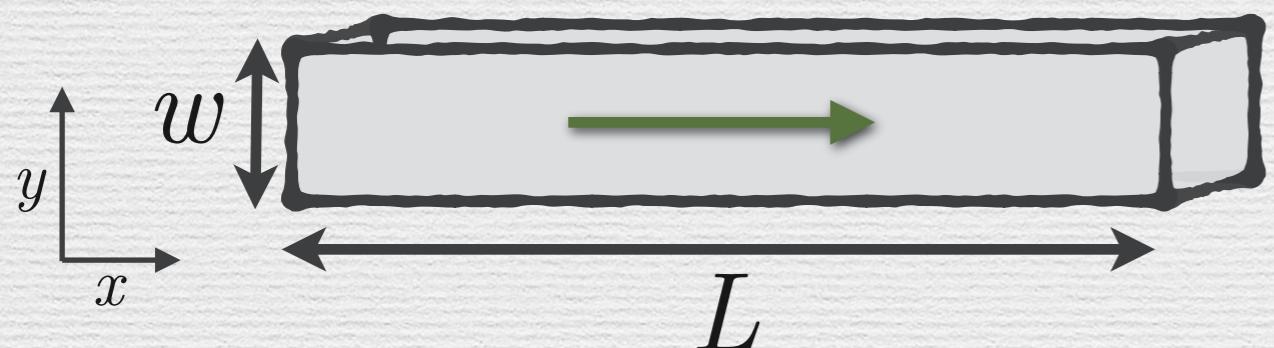
“a-type”
Linear velocity dependence

$$\mathcal{G}_a(\mathbf{v}) = \sum_{i=x,y,z} a_i v_i$$

“b-type”
Quadratic velocity dependence

$$\mathcal{G}_b(\mathbf{v}) = \sum_{i=x,y,z} b_i v_i^2$$

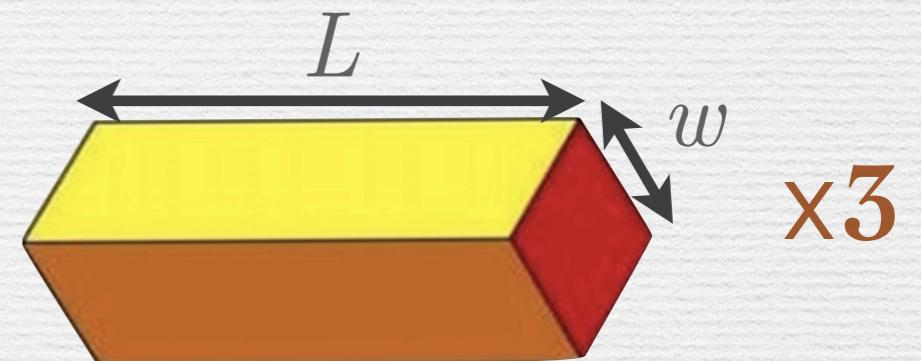
- For long aspect ratio experiments, expect one a_i/b_i component to dominate, e.g. rectangular cavity:



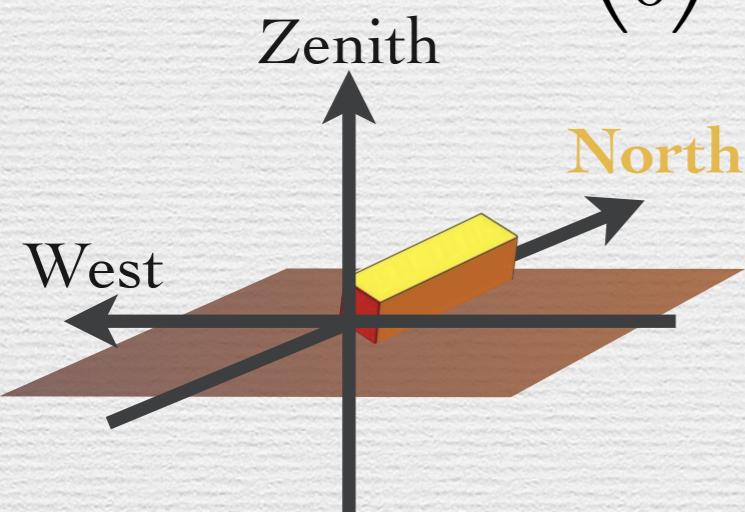
$$b^2 = -m_a^2 \begin{pmatrix} L^2/12 \\ w^2(1/4 - 2/\pi^2) \\ w^2(1/4 - 2/\pi^2) \end{pmatrix}$$

Combining cavities

Set up multiple (e.g. three) cavities, and compare signals

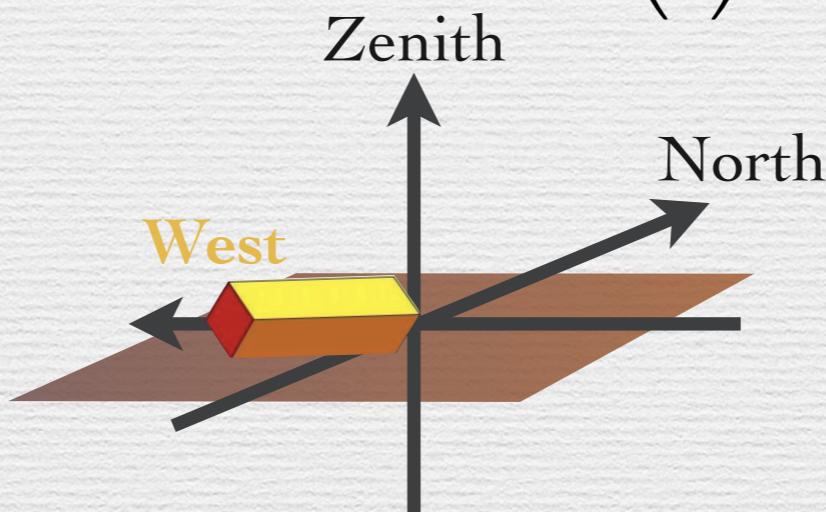


$$\mathbf{b}_N \approx -\frac{L^2 m_a^2}{12} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$



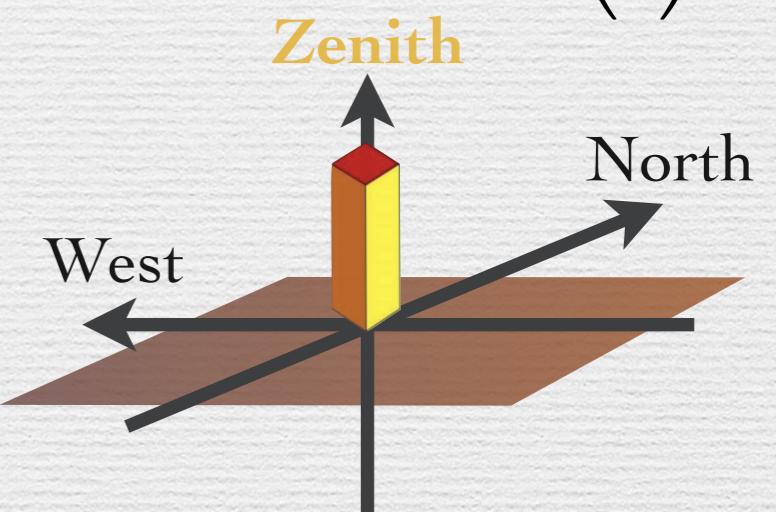
$$\rightarrow v^2_N$$

$$\mathbf{b}_W \approx -\frac{L^2 m_a^2}{12} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$



$$\rightarrow v^2_W$$

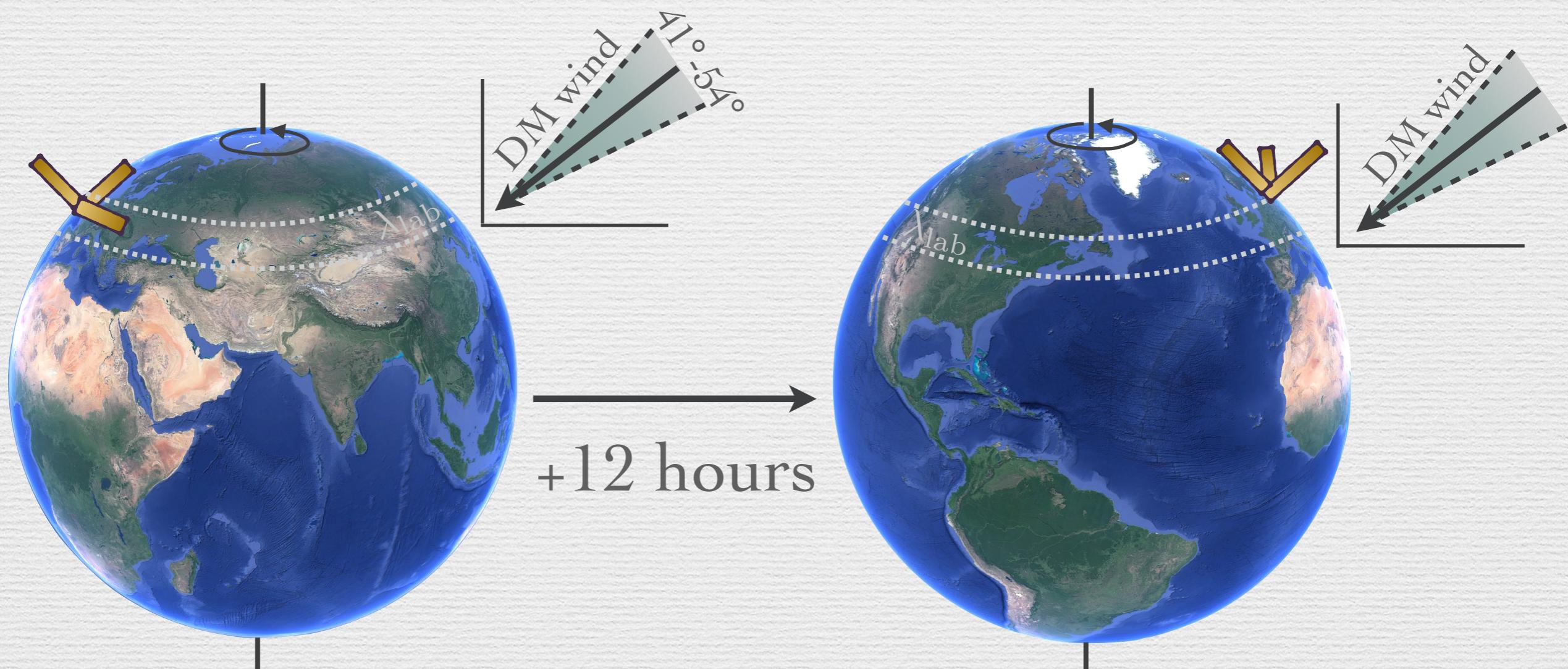
$$\mathbf{b}_Z \approx -\frac{L^2 m_a^2}{12} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$



$$\rightarrow v^2_Z$$

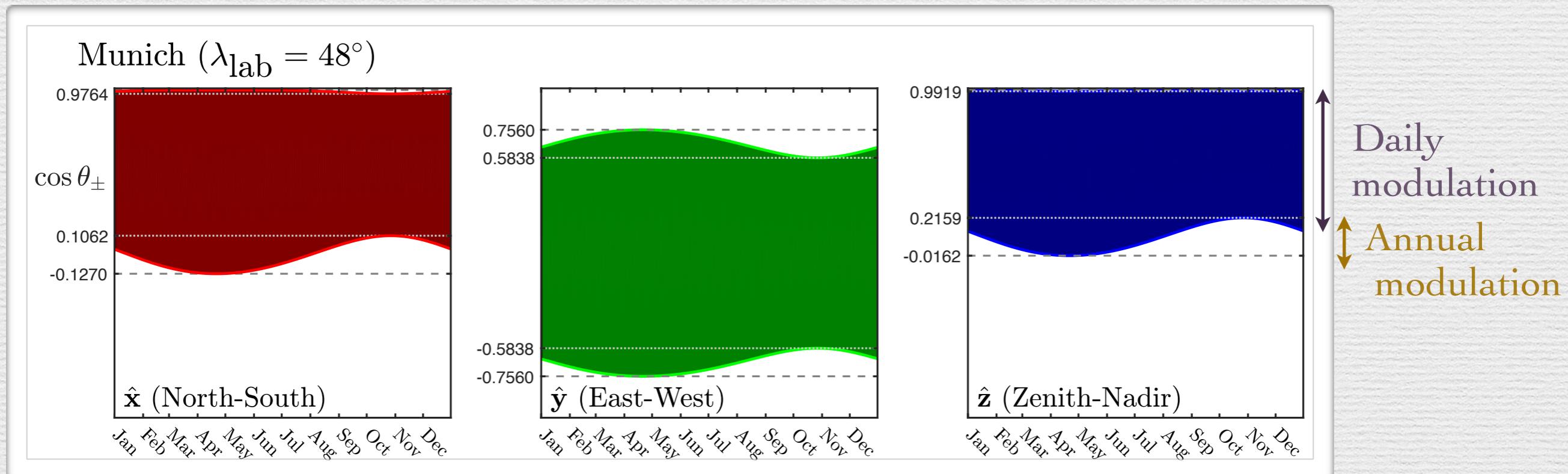
Building an axion observatory

- Explore $f(\mathbf{v}; t)$ by examining ratios of signals between cavities pointing in different directions
- But **b**-type experiment has no sensitivity to $\pm v_i$
→ But, the Earth is rotating and revolving



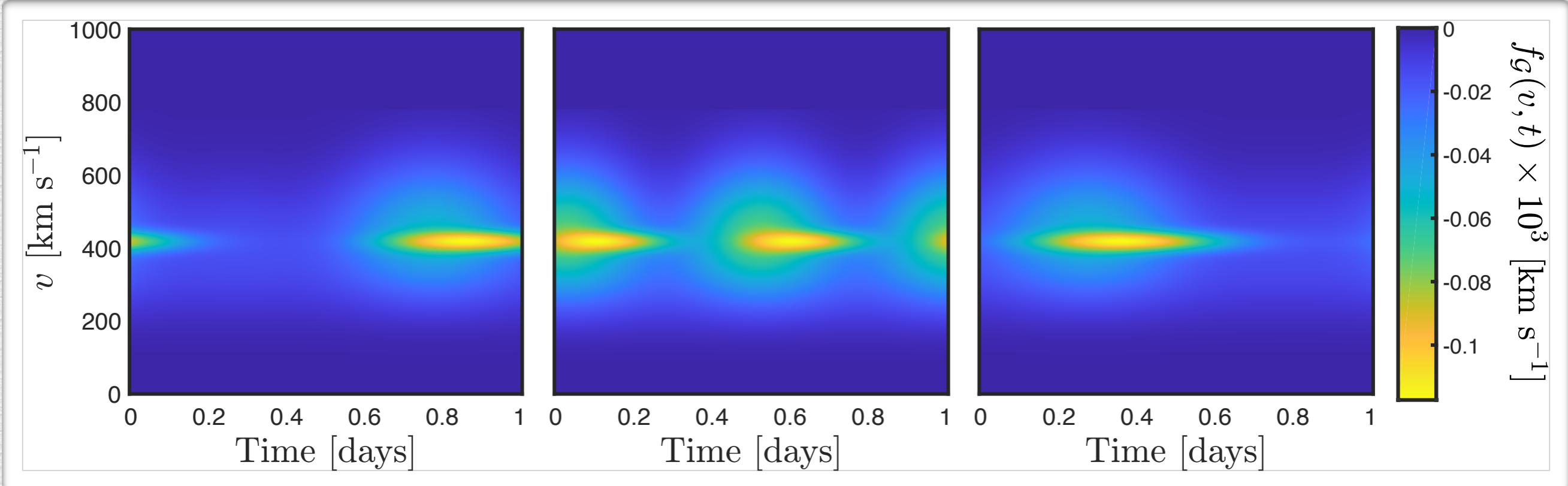
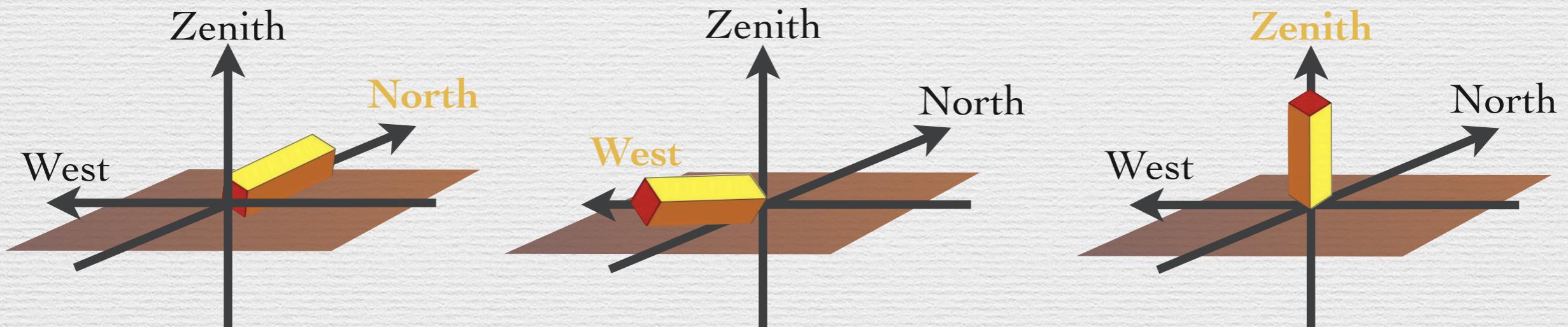
Daily modulation

- For long cavity: daily modulation > annual
- Define $\cos \theta_{\pm}(t)$ = range of angles between the axion wind and cavity directions: **(North/West/Zenith)**



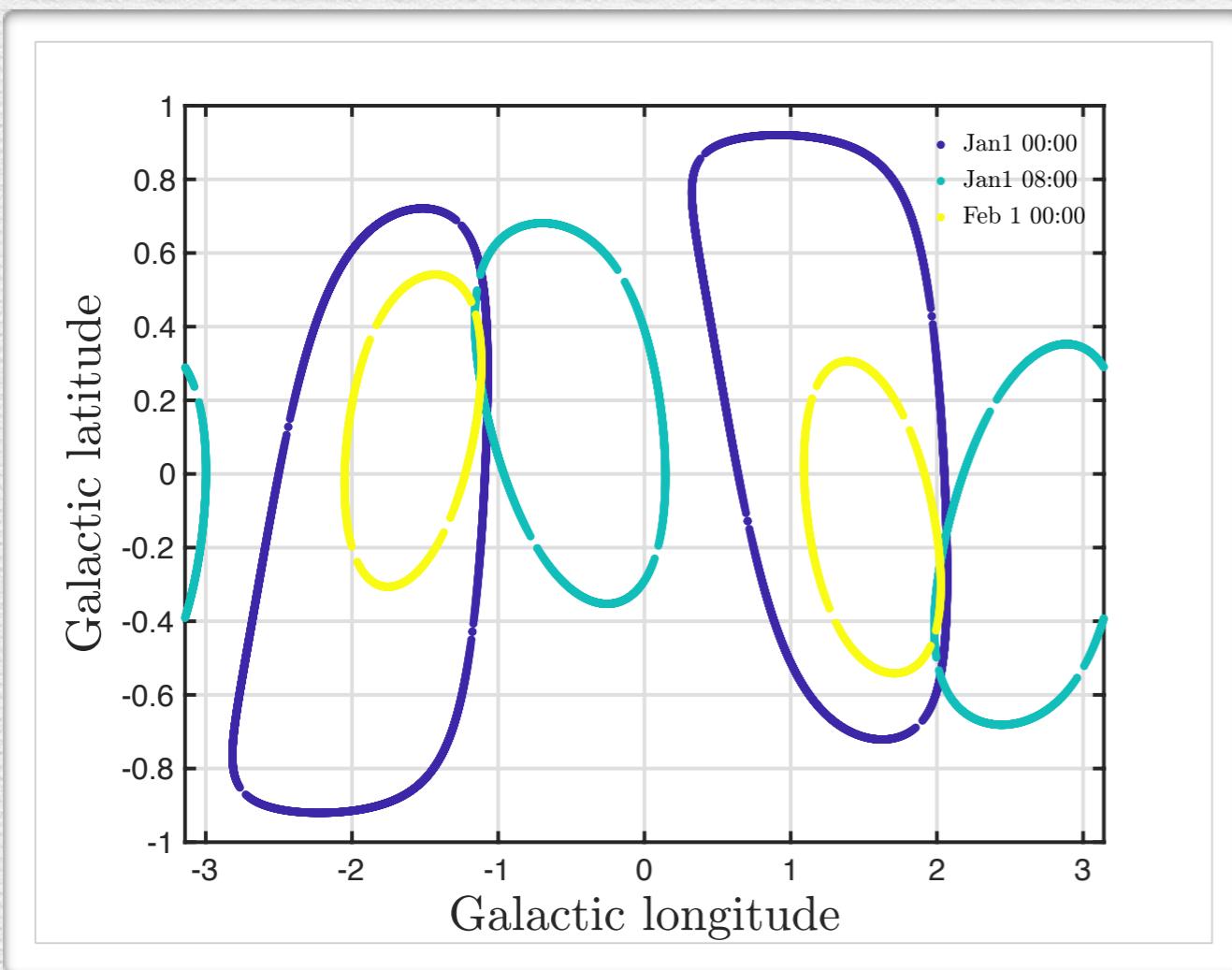
Distribution with stream

Daily modulation



Detecting a stream

- Detecting three velocity components of a stream:
 - $|v|$ → **No**-directionality: $\sim O(1 \text{ year})$ of power spectra
 - $v_{x,y,z}^2$ → **b**-type directionality: $\sim O(1 \text{ month})$ of power spectra
 - $v_{x,y,z}$ → **a**-type directionality: $\sim \text{Single power spectrum}$

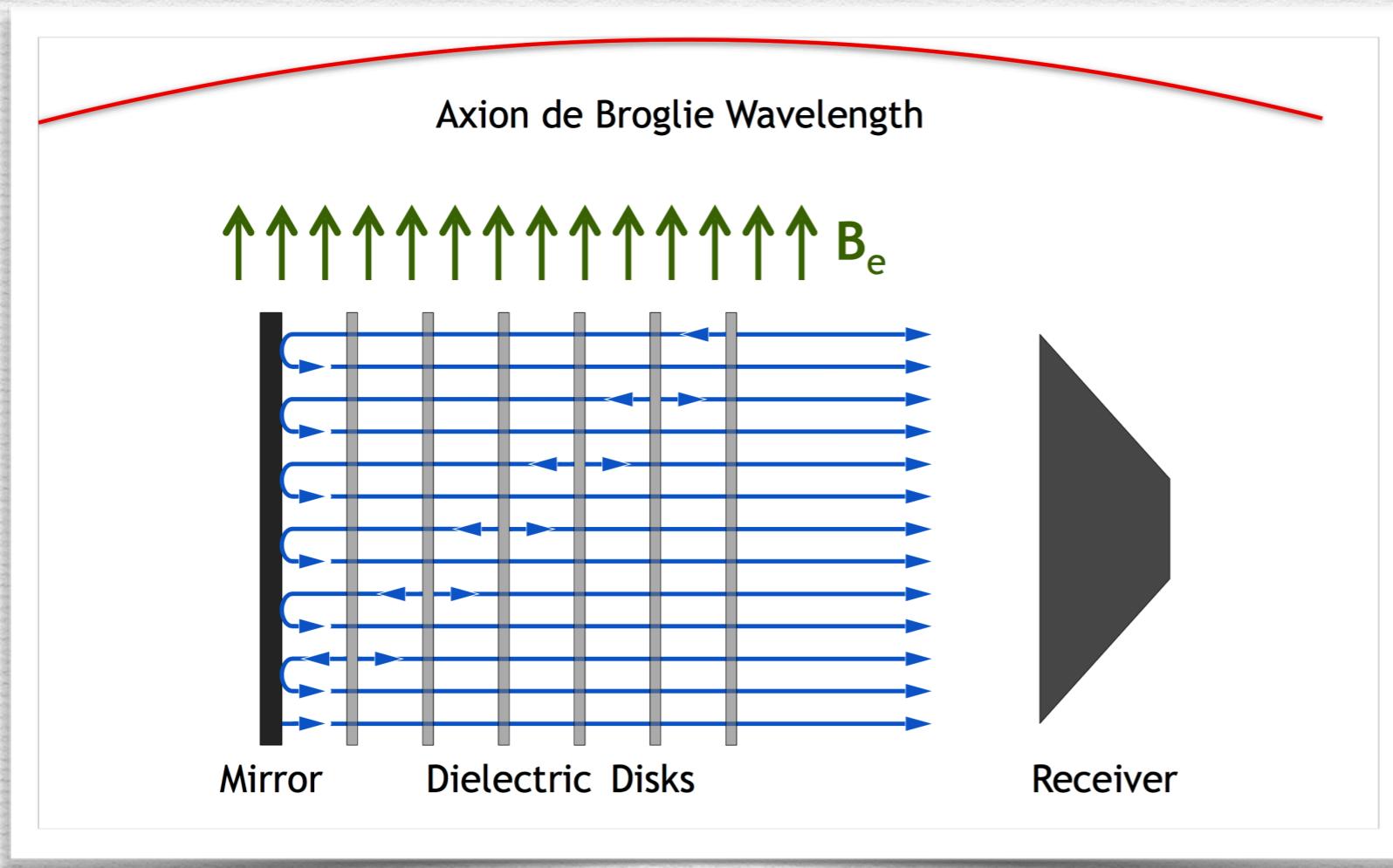


Purely from geometric arguments
(i.e. best case scenario with *no noise*)

Clearly an **a**-type experiment is desirable
e.g. detection of ministreams

Dielectric disk haloscope

- Axion field crossing a magnetised boundary generates photons
- Line up multiple dielectric disks, spaced correctly to coherently enhance the reflected and transmitted EM waves



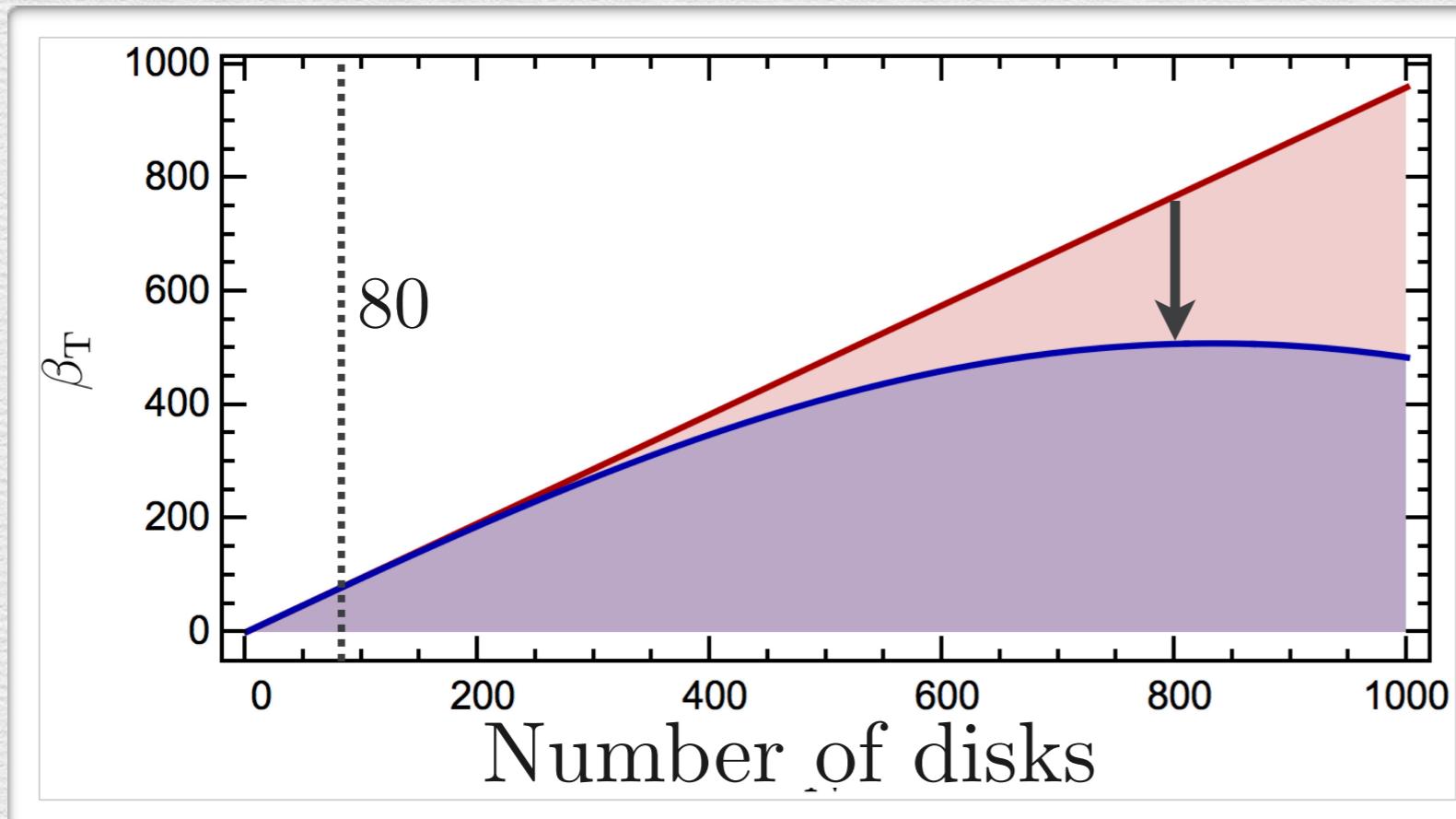
Millar+ [1707.04266]

$$\beta^2 \equiv \frac{P_{\text{dh}}}{P_{\text{mirror}}}$$

Dielectric disk haloscope

- Non-zero axion velocity causes phase difference across experiment
- Velocity dependent boost factor Millar+ [1707.04266]

Signal/area: $\frac{1}{A} \frac{dP_{dh}}{d\omega} \propto \frac{dv}{d\omega} \int d\Omega_v \beta^2(\mathbf{v}) f(\mathbf{v})$

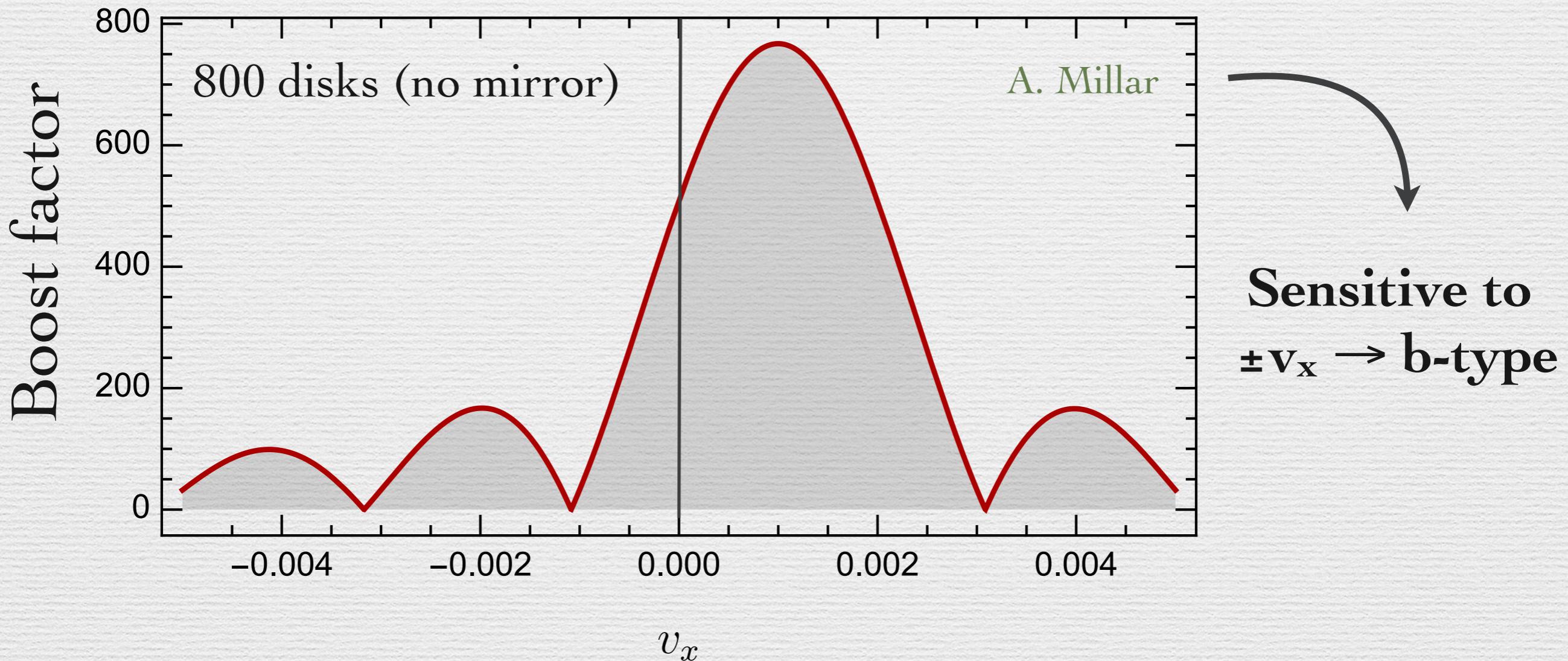


$v = 0$
 $v = 300 \text{ km s}^{-1}$

Example for
transparent disks

Velocity effects in MADMAX

- Unimportant for standard 80 disk setup (this is a good thing!) but could be exploited in an extended experiment ($> O(100)$ disks)



Summary

- Uncertainty in the local DM distribution both a problem and a *motivation* for direct detection experiments
- Take some inspiration from WIMP dark matter, but directional detection in this context difficult to achieve experimentally
- Directional axion astronomy more straightforward, just scale up existing technology e.g.
 - Long aspect ratio cavities (e.g. ADM-XL)
 - Long dielectric disk experiments (e.g. BIGMAX)

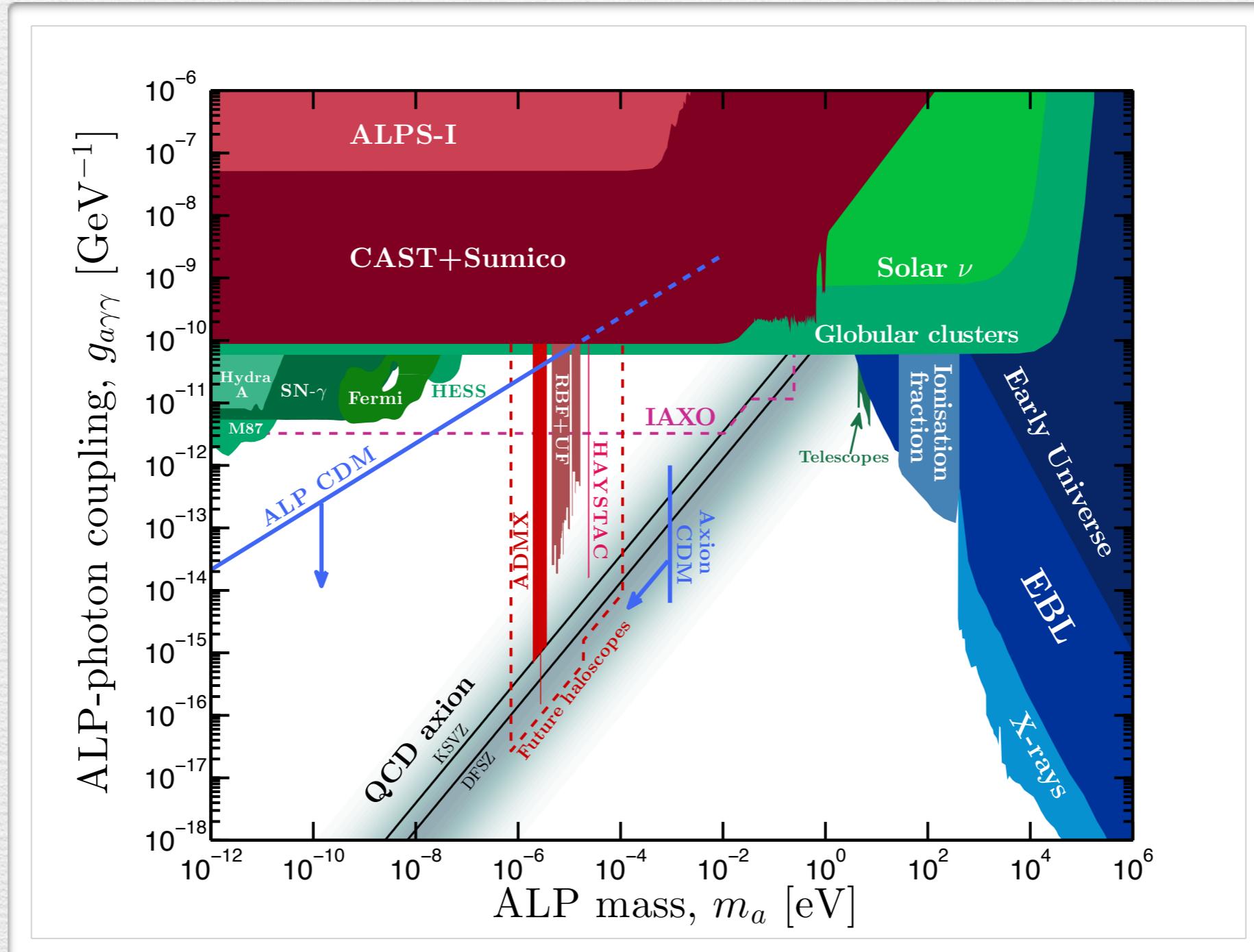
Bonus

WIMPs: dealing with astrophysical uncertainties

- Halo independent $g(v_{\min})$ methods (integrate out uncertainty)
e.g. Fox+ [1011.1915], Frandsen+ [1111.0292], Kahlhoefer+ [1607.04418],
Catena+ [1801.08466], + many many more...
- General parameterisations (fit distribution, but remain agnostic)
e.g. Peter [1103.5145], Kavanagh & Green [1303.6868], Kavanagh [1502.04224]
- Bayesian methods (with some astrophysically informed prior)
e.g. Strigari & Trotta [0906.5361], Fowlie [1708.00181]
- Dealing with non-Maxwellian structure
e.g. Lee, & Peter [1202.5035], O'Hare & Green [1410.2749]

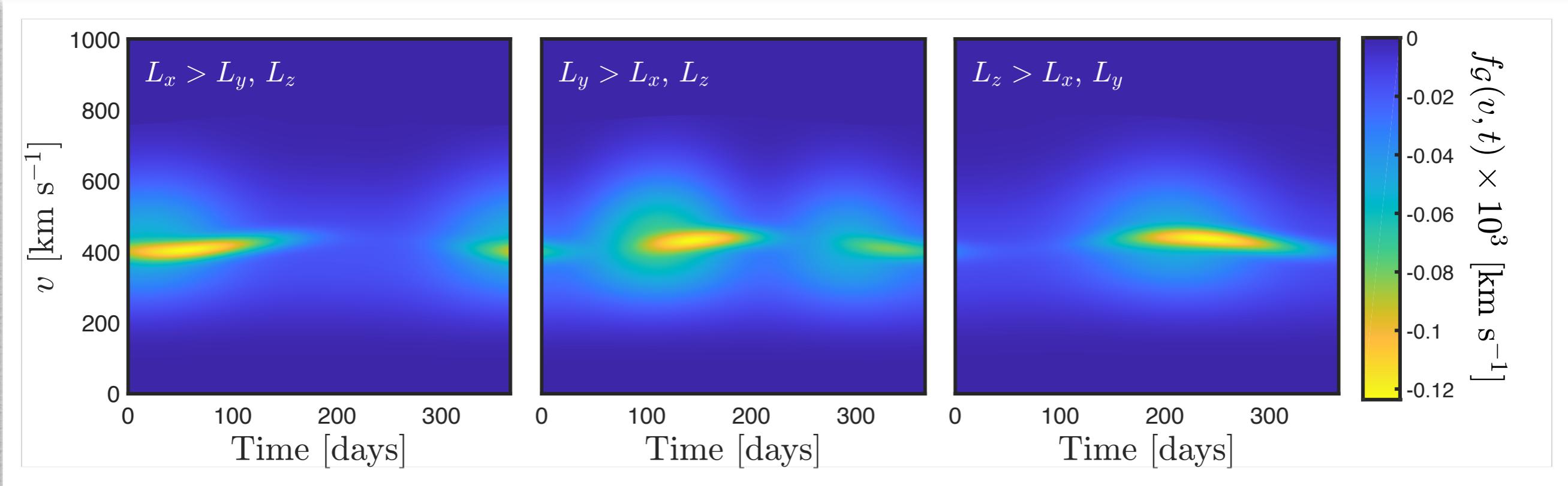
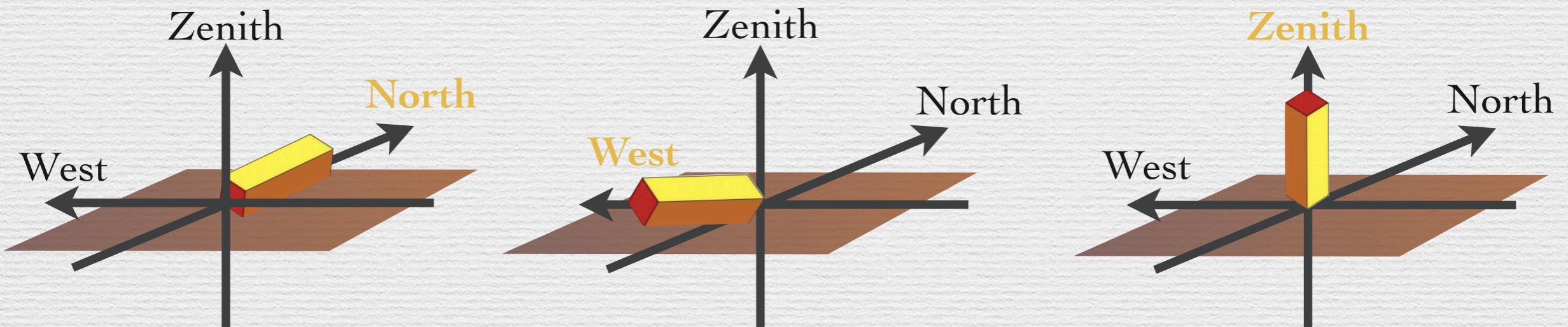
Detecting axion dark matter

$$\mathcal{L} = \frac{1}{4} g_{a\gamma} a(\mathbf{x}, t) F_{\mu\nu} \tilde{F}^{\mu\nu}$$



Distribution with stream

Annual modulation



Problems to consider

- Ideal detection scheme would have sensitivity to $\pm v_i$ components
 - Is Earth rotation enough? (cf. minicluster streams)
 - Is mirror-less MADMAX sensitive enough?
- Trade-off between strong velocity effect and high S/N
- Velocity effects for low mass axions ($< 10 \mu\text{eV} \rightarrow \lambda_a > 100 \text{ m}$)
 - Phase tracked network of separated cavities?
 - Multiple NMR experiments exploiting axion-wind effect?
(CASPER-wind)
- Find the axion