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The problems with detecting WIMPs via nuclear recoils

3. If you have a non-background nuclear recoil: was it a
neutrino or a WIMP?

4. You have a non-background, nuclear recoil, that’s definitely not a
neutrino... is it the dark matter?

Ciaran O’Hare (U. Sydney)



Neutrino fluxes
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Most immediate problem

area for Xenon expts.

~6 GeV WIMP vs Boron-8 Solar-v
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The problem
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A dark matter signal will align with our galactic motion
— point back towards Cygnus

Nothing other than dark matter will do this...

January 1

00 . Galactic
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(Fluorine recoils above 3 keVr)
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Galactic coordinates

WIMP recoils Solar neutrino recoils
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Subtracting the neutrino background [z N

S0 >

Detector mass |ton]

5 -4 -3 -2 0 1 2

10 10” 10" 10” 10”" 10” 10" 107 I\ 77 N .
: 3 > - —Counting only | :
~-e-Time

o Energy + Tlme
~ —1-d + Energy + Time

”’
- —’—-
- -
o — ’—
_— - =

-
-
N =~

> 11 II£04
WIMP mass [GeV/c?

imem2-d-+ Energy-+ Time -
=3 d -+ Energy —|— T1me§

Directional into
powertful for
subtracting

Solar neutrinos

But so far only
studied under

10_ III 1 IIIIIEIII 1 IIIIIEIII 1 IIIIIEIII 1 IIIIIEIII 1 IIIIIEIII 1 IIIIIEIII 1 IIIIIEIII
107 107" 10° 10’ 10° 10° 10* 10°
Number of expected 8B events

SI discovery limit at 6 GeV [cm?]

N
[{e]

conditions

T — e —— 11



A directional experiment can discover dark matter

No other experiment can unequivocally confirm a
signal with galactic origin.

Ciaran O’'Hare (U. Sydney)
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* Collaboration: >50 members from US, UK, Aus., Japan, Italy, Spain, China

* Focus: low pressure gas time projection chamber (TPC)

*  Primary goal: WIMPs discovery below the neutrino floor
* Secondary goal: Directional detection of CEVNS with Solar v’s
Tertiary goals: study DM velocity dist., directional v-e- scattering...+more?

CYGNUS: Feasibility of a Nuclear Recoil Observatory with Directional Sensitivity to
Dark Matter and Neutrinos

E. Baracchini,»?3 P. Barbeau,? J. B. R. Battat,” B. Crow,® C. Deaconu,” C. Eldridge,®
A. C. Ezeribe,® D. Loomba,’ W. A. Lynch,® K. J. Mack,'!° K. Miuchi,’* N. S. Phan,'?
C. A. J. O’Hare,'® 14 K. Scholberg,® N. J. C. Spooner,® T. N. Thorpe,® and S. E. Vahsen®



Low-pressure gas TPC

- cathode

WIMP

Sampling

Ciaran O’Hare (U. Sydney)
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CYGNUS TPC: Basic Parameters

1000 m3 of He:SF¢ at atmospheric pressure and temperature

Big volume, but there are certain advantages to gas targets
— Can be modular and/or multi-site.

— No cryogenics, no restrictions on the shape of the expt.

— Atmospheric pressure so thinner vessel walls possible

CYGNUS-Nm3 CYGNUS-10 m3 module

Vessel

Drift direction ———»

Ciaran O’'Hare (U. Sydney) 15
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Target gas: 1 atm. 755:5 He+SFKé¢

Why SFe¢?

— Negative ion drift mixture: drift 1ons rather than electrons,
results in lower diffusion and better track preservation

— Minority Charge carriers which can be used to fiducialise the
gas volume 1n the drift direction (2)

— 9F has very high {Syroton? so sets powertul spin dependent
WIMP limits (this is why PICO’s SD-p limits are so good)

Why He?
— Light WIMPs still give large recoil energies with He: improves
the low mass sensitivity
— High quenching factor in gas mixture

— Does not significantly impact the Fluorine tracks, so can be used
simultaneously

16



Possible underground sites

CYGNO project
He:CF4 electron drift TPC

) triple thin GEM-+optical readout
@ Already in development by Italian group,
See: web.infn.at/cygnus/cygno/
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CYGNUS-HD10 ' CYGNO
Lead, South Dakota | Gran Sasso, [taly

CYGNUS-0Z
Stawell, Aus.

CYGNUS-Andes
Chile/Argentina

Ciaran O’Hare (U. Sydney)



New site under construction in Victoria

Stawell Underground Physics Laboratory (SUPL)

Size of DRIFT-1I
(currently at Boulby)

/

Size of would-be
CyconNus-10 m3 module

+ 1.6 km depth

s+ First underground site in Southern Hemisphere

Ciaran O’Hare (U. Sydney) | 18



Readout technologies

Important advancement in this study
—> ground-up simulation of six readout technologies for reconstructing
low energy electron/nuclear recoils

Recoil track

0.2
T ||
5 optlcal

Planar ‘Wire  Pad Optlcal Strip  Pixel

No. of ph t

charge [1 0° e]
n B
charge [1 0o® e
n N
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Readout technologies

Planar ‘Wire Pad Op tlcal

- 02 ﬁ
; Opt cal

Strip

Pixel

(when combined with PMTs)

0.1 0.1
0 -0.1 0
~0.2

Simplest readouts Most complex readouts
— Worst directional — Best directional
sensitivity but sensitivity but
lower cost higher cost

Balancing cost ¢s directional performance

is the goal of this study

Ciaran O’Hare (U. Sydney) 20



Measuring tracks

- cathode
WIMP Multiple
processes will
degrade the recoil
track during
detection

— Straggling

— Diffusion

— Amplification

———— Readout

Ciaran O’Hare (U. Sydney)



Recoll tracks (in He+SF¢ at 1 atm)

Betore drift After 25 cm dnift
S. Vahsen

Electron:

20 keV

He Nucleus: % 0.2

(25 keVr) o NG AN




Angular resolution

Original track Track aftter 25 cm dnift

0.0

25 keV, Helium recoil in 1 atm. of 755:5 He:SF¢

Ciaran O’Hare (U. Sydney)
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Head-tail recognition

Ability to recognise the forward-
backward sense of a recoil

Original track Track after 25 cm dnrift

0.0

Ciaran O’Hare (U. Sydney)
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Angular resolution

: .. , readout performs the
Dispersion in measured angles relative to

worst here, readout so

initial recoil direction (=1 rad if there 1s - ole th 1
simple that no angular

no correlation and recoils are 1sotropic) . ..
information 1s measurable

readout performs as
good as post-drift = almost
_~no loss in directionality after

charge readout (promising!)

Post-drift: directionality
washed out by diffusion

Angular resolution [degrees]

especially for low energy

tracks

Pre-drift: the track is

Wi planar mwire optical 3d i pad ) well preserved, loss 1n
strip pixel _ Eipostdrift M pre drift directionality at low energies

Energy [keVr just due to straggling

10

0

Ciaran O’Hare (U. Sydney) 25



Head-tail recognition

How often you can measure head/tail correctly
(560% 1s random chance)

—

0.8

Correct head tail fraction

0.4

0.2

- (I planar W wire optical 3d [ pad

B strip pixel W post drift M pre drift
O | I D I I N S N N N N N N N S N N N S N N N S N N N S S N N N S N N S N S L1

Energy [keVr]
Ciaran O’Hare (U. Sydney)

Pre-drift: the track 1s

well preserved, loss in
directionality at low energies
just due to straggling

Post-drift: some
directionality
lost due to diffusion

readout performs best

- “~._again — almost no loss in

directionality after readout

Pad readout performs the
worst here, very weak HT
signature along readout
dimension
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Backgrounds

We want:<] NRs yr-! and <109 ERs keV-! yr-]
in a 1000 m3 TPC

e.g. ERs from 30
cm copper TPC

vessel 4

(Full MC background
study will be in paper)

Ciaran O’'Hare (U. Sydney)
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Backgrounds part 2: Fiducialisation

* We also need to be able to locate tracks in (x,y,z) to remove edge
events, double scatters etc., especially from radon progeny recoils

* Readout does this in (z,7), 60 | | |
L Minority carriers region|  Main peak region

but z1s tricky L

* but SF¢ gives us a way 40F |

— Different 1ons of SFe E

called dritt 2 il

at ditferent speeds through = o}

the gas so delays in their )= [r sy

arrival times at the readout 1or ‘*ﬁ;

tell us how far they drifted T YV L TS

—191% 05 0.0 0.5

Ciaran O’Hare (U. Sydney) Time relative to trigger [ms



Threshold

We want an electron rejection factor of 104, in the range 1—10 keV: our
NR analysis threshold will be based on how low we can achieve this
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Energy threshold — electron rejection >104

C =
% 6 X ié* S. Vahsen « _8 eV is feasible
_%10 3 'b& + 4, already with just
S B + track 1ength VS
Em%— é@ - ‘ 3 .enrgy B

— . - -
— o - & oo, P S oo P e ey

NB 8 keVr 1S hkely an upper llmlt of a feasﬂ)le threshold

* Rejection via track length alone 1s a 51mple metric, electrons and nucler have

. very different track topologies and this information is currently unused. g
* Currently assuming a fixed 25 cm drift length, but diffusion ~ sqrt(drift

length), so closer recoils than 25cm will diffuse a lot less than further ones will §

+ diffuse more.
'\, o« . . . . . .
¢ Preliminary studies with machine learning-based techniques for electron

%t discrimination suggest possible sub-1 keV.. electron rejection
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WIMP reach: spin independent (SI-nucleon)
(90% CL exclusion of WIMP hypothesis under neutrino background)

Threshold: 8 keVr currently feasible = 0.25 keVr 1s theoretical minimum
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WIMP reach: spin independent (SD-proton)
(90% CL exclusion of WIMP hypothesis under neutrino background)

Threshold: 8 keVr currently feasible = 0.25 keVr 1s theoretical minimum
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p-PIC (strip) based readout currently looks the best in
terms of cost vs. WIMP reach
A closer look at dependence on threshold:
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CDMSlite

10V

Headline plot
CYGNUS X 6 yrs
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CYGNUS Single electron threshold (0.25 keV,)
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Conclusions

* Cygnus aims to be the first experiment with
discovery capabilities for DM below the neutrino
tfloor

* End goal: >1000 m3 gas-TPC

e With currently available readout techs it seems
reasonable with further optimisation to get down to

8 keV. with:

* Angular resolution <30°
* HT recognition >75%

* >104 electron rejection

Work still ongoing and participation welcome

Ciaran O’'Hare (U. Sydney) 36
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You can push through the background without

directionality, but very slowly
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Annual modulation: does it help?
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Increasing
exposure
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time

q = sin 6 cos ¢x -+ sin 0 sin ¢y -+ cos 0z |

Neutrino WIMP
Daily modulatlon Daily modulation

1D dist. at 0.5 keV

-1 -05
Ciaran O’Hare



Quenching factors for recoils in 1 atm of He+SF¢
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Say we build Cygnus and find that...

1. We have a signal

I——> We study it
2. We don'’t

Then what?



The standard prediction involves a few main assumptions:

*The DM scatters elastically

2mnm?
I—) E,. = N 2?}2(3082(9
(mN + mX)

MmN = Nucleus mass
My = DM mass

*The DM velocity distribution 1s a Gaussian (SHM)

L ()~ exp (- v+ Vlab)2)

20>

Viab = Our velocity

o, = Velocity dispersion

* DM-nucleus matrix element does not depend on velocity

dR

TORN /5 (vcos 0 — Vmin) f(V)d?v

Angular rate 1s the Radon
transform of f(v)




Under these assumptions the angular signal
is a Gaussian peaking towards Cygnus

L S ( (Venin + V1an (£) cos 0) )

d cos b o (2770%)1/2

January 1

+- 30—

0 . GGalactic

-

- 0 g - . o,

Ciaran O’'Hare (U. Sydney)



Under these assumptions the angular signal
is a Gaussian peaking towards Cygnus

| dR(t) 1 (Umin + Vlab(t) cos 6)°
X eXp
d cos 6 B, (Qng)l/z 203

But this 1s

if we break those assumptions,

and we have reason to...
— The DM velocity distribution 1s not a Gaussian
— WIMPs may not scatter elastically

— The WIMP-nucleus interaction may involve velocity-dependent operators

Galactic
OO

——————————————————————————————



Should the DM velocity distribution be a Gaussian?
— Evidence of significant merger in the MW’s history

The Gaia Sausage

See e.g. Helmi et al. 1806.06038, O’Hare et al., 1810.11468, Necib et al. 1810.12301



Metal-poor halo Metal-rich halo
| Fe/H]<-1.5 | Fe/H]>-1.56
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* Round velocity ellipsoid * Highly eccentric radial orbits

¢ ~30% of main sequence halo sample ® Dominant contribution ~50%
e More metal-poor on average e Characteristic metallicity [Fe/H] = -1.4

Ciaran O’Hare (U. Sydney)



The Gaia Sausage

seen prominently in the Gaia data — Should also be present in DM distribution

DM FIUX fOI‘ SHM Galactic

(Gaussian distribution) plane

SHM + Gaia Sausage

(Anisotropic component due

Galactic

to merger with a dwarf galaxy)

Ciaran O’Hare (U. Sydney)



The DM 1n the Gaia sauage is highly uncertain

—> this is something Cygnus could measure

but other experiments cannot
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Substructures cluster 1n action space even when they :
i are not clustered 1n phase space or visible on the sky }

|

— we can see streams that we are inside of

<Lz Y 5 DT, el g e s o (= g PV 2T 1 e Rl O
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Gaia also shows evidence of substructure passing through Solar position
— e.g. S1 (hurricane), S2 streams

SHM DM ﬂllX Galactic

(Gaussian distribution)

-

SHM + Gaia Sausage + g

Local substructures 0° Galactic

(Peaks 1in other directions due to
streams) —3U

Ciaran O’Hare (U. Sydney)



The S1 stream

® Most prominent substructure

8 I :
encompassing the Solar

6 1 System

4 & -
5 e Likely the remnant of a large
ﬁg 9 | (Fornax-sized) dwarf
N spheroidal accreted around
© | the same time as the Sausage
>
§ 5 1 event
© ‘

&

O 4 e S1 and other retrograde stars

possibly linked to a larger

—0 71 “Sequoia” event. Also
- : , responsible for several
—8
0 5 10 15 anomalous retrograde GCs
Galactic X |[kpc| (see 1904.03185)

Ciaran O’Hare (U. Sydney) 53



Sl in LZ

Red regions: range of WIMP models for which the stream can be
distinguished from the halo in I.Z at 3 sigma
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S1 1n a directional detector

Green regions: range of WIMP models for which the stream can be
distinguished from the halo in CYGNUS at 3 sigma
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Non-relativistic EFT of DM-nucleus interaction
Allows for operators (e.g. O5, O7) dependent on transverse velocity:

VJ_ =V = Q/Q,UXA

— Non-Gaussian angular distributions

0.040
o Y
0.035 o—e (')4 .
% O
0.030- -
— O,
- 0.025F o 0,
z —a O
o
30020 >—p O{'R
=
0.015F
0.010}
0.005¢
0.000

0 20 40 €0 80 100 120 140 160 180
Kavanagh [1505.07406] 0 (degrees)



How wrong are these assumptions?

— Gaussian velocity distribution

— No WIMP elastic scattering

— No velocity dependent operators

We don’t know, but that’s the point...
P

Non-directional detectors are (realistically) unable to
probe these assumptions even with a DM signal
— they rely on directional information to test

*+more 1deas that | haven'’t discussed, like measuring the DM spin, detecting axion-like

particles, superheavy WIMPs, sub-GeV DM...
Ciaran O’Hare (U. Sydney)



Say we build Cygnus and find that...

1. We have a signal
I——> We study 1t

2. We don'’t

L—> Our background 1s our signal

Ciaran O’Hare (U. Sydney)
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The neutrino background

Nuclear recoils | Elecltron refzoils |
&O/ He:SFg at 740:20 Torr \ He:SF¢ at 740:20 Torr
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A directional detector has the potential for superior background
rejection and NR/ER discrimination
—> this 1is true even if you're not talking about DM
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Geoneutrino flux
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Geoneutrino flux
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Leyton+ [1710.06724]

Physics case includes:
- Measure radioactive contribution to Earth’s heat generation (10 ton-years)
- Measuring Earth’s 490K content (100 ton-years)

Probing the source of Earth’s magnetic field (5100 ton-years)



Pointing to a supernovae
Expect >3 events in CYGNUS-10k for 10-30 M,

core-collapse Supernova closer than >8 kpc
Nuclear recoils
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Pointing to a supernovae
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Very close O(100 pc) stars like Betelgeuse, may be possible to point

to pre-supernova neutrinos days 1n advance, see e.g. [1905.09283]
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