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Dark matter 

WIMP and axion searches

Selected topics from my work:
✦ Dark matter+neutrinos
✦ Dark matter experiments+Gaia
✦ Directional dark matter detection
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The dreaded pie chart…
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We have evidence for dark matter’s existence on length 
scales spanning ~10 orders of magnitude…
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CMB+
Large scale 
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Mass scale of dark matter

10-22 eV keV GeV

WIMP``Ultralight” DM

non-thermal  
bosonic fields"

``Light” DM

dark sectors"
sterile ν"

can be thermal

Primordial"
black holes 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Important to remember
• All candidates basically work as dark matter in a broad 

sense (i.e. have mass+don’t interact much)
• But not all are “vanilla CDM”. Some forms of DM make 

structures in the Universe look a bit different (e.g. self-
interacting DM, fuzzy DM, warm DM)

• They are generally speaking not mutually exclusive, in 
terms of existence, or as dark matter…

• Complementary probes exist, collider searches, fifth force 
experiments, light-shining through walls, helioscopes
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WIMPs
Weakly Interacting Massive Particles

What does that actually mean?
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1. There are 
WIMPs from the 

galaxy passing 
through the Earth 

right now

2. They will 
interact with 

atoms

If cross section w/ nucleus (e.g. Xe)

� ⇠ 10�41 cm2

→ number of events per unit detector mass

R ' ��/mN ⇠ 0.5 events ton�1
year

�1

v ~ 300 km/s
“DM wind”

→ Flux of 100 GeV WIMPs:

⇢DM ' 0.5GeV cm�3

Local density of DM:
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m
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µ

Outer shielding/Active veto e.g. Water
Inner Shielding e.g. Pb

Target (Xe, Ar, NaI, Si, Ge…)

n

First, need to shield the 
background

𝛄
e-



How do you measure the signal?
How do you know a WIMP created it?µ

µ

Outer shielding/Active veto e.g. Water
Inner Shielding e.g. Pb

Target (Xe, Ar, NaI, Si, Ge…)

n 𝛄
e-
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The more information the better:
• Measure multiple signals, e.g. 

electrons, ions, photons, heat
• Locate events in x-y-z
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How to set a WIMP limit when you have run an 
experiment and seen nothing:

Mass, mDM

C
ro

ss
 S

ec
ti

on
, 𝜎

Excluded
(Would have produced an excess of 

events above background in, say, 90% 
of experiments)

Available
(Would give an insufficient number 

of events above background during the 
running time)
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Effect of recoil 
energy sensitivity:

Available
Emax ~ mDM2 

For masses smaller 
than nucleus, recoil 

energies are too 
small

C
ro

ss
 S

ec
ti

on
, 𝜎

Mass, mDM

Available
Emax ~ const. 

For large masses

E
max

=
2mNm2

DM

(mN +m
DM

)2
v2
max

Excluded
(Would have produced a 
signal in the experiment)

~800 km/s
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for heavier masses, 
there are fewer 

particles around to 
detect so limits get 

weaker

Mass, mDM

C
ro

ss
 S

ec
ti

on
, 𝜎

Available

Available Excluded

Event rate proportional to DM 
number density R / �⇢DM

mDM
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Current status on the spin independent WIMP-proton cross section
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Lower 
energy
thresholds

Bigger
 detectors

EXCLUDED

AVAILABLE

Current status on the spin independent WIMP-proton cross section
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Future status
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Future status

if the WIMP lives 
here, we’re in trouble
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The neutrino floor

Spectrum of coherent neutrino-nucleus scattering looks 
just like WIMPs.

 But neutrinos are impossible to shield 
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Sources of neutrino

The Sun

The Earth

Nuclear reactors

Supernovae

The atmosphere
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Comparing WIMP and neutrino event rates (in Xenon)

6 GeV 
WIMP

8B Solar 
neutrinos
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Er}
Er =

2µ�N

mN
v2 cos2 ✓

For neutrinos and WIMPs, the recoil energies 
are the same, but the directions are not



Dec

Jun
Cygnus



WIMP recoils              Solar neutrino recoils

180˚



WIMP recoils              Solar neutrino recoils

180˚



CYGNUS
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• Collaboration of ~50 signed members from the directional 
detection community

• Members from USA, UK, Japan, Spain, Australia, Italy
• Towards a ton-scale directional WIMP search below the 

neutrino floor
• Investigating gas-based time projection chamber (TPC) 

with various readout technologies



Directional detection
● Low pressure gas time projection chamber (TPC):

x

z

y

~mm

tim
e

+ anode

WIMP
WIMP

- cathode

E-fi
eld

Sampling

x, y = grid



Ciaran O’Hare

Neutron
X-rays

Alpha
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Extremely light bosonic DM: 10-6 —10-4 eV (classic QCD axion)

→ macroscopic occupation numbers needed to make up 
dark matter ~ 0.5 GeV cm-3

The axion
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DM axion field: a(x, t) ⇡
p
2⇢a
ma

cos (!t� p · x+ ↵)

! ⇡ maOscillating at the axion mass



Axion-photon coupling:

L =
1

4
ga�a(x, t)Fµ⌫ F̃

µ⌫

L =
1

4
ga�a(x, t)Fµ⌫ F̃

µ⌫

a

For QCD axion: ga� / ma

ga� , ma

r ·E = ⇢q � ga�B ·ra

r⇥B� Ė = J+ ga�(B ȧ�E⇥ra)

r ·B = 0

r⇥E+ Ḃ = 0

(⇤+m2
a)a = ga�E ·B ,
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Searching for DM axions
→ “tune in” to EM signal oscillating at ~ma

36

B-field

Signal is tiny! - must be amplified

! ⇡ ma
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[1910.08638]

Benchmark 
QCD axion 

models

…

Scan over frequency
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Measuring the axion distribution

39

Sampling axion field over many, N, coherence times:
 → Power spectrum ~ DM speed distribution f(v)

P
ow

er

Frequency

N ⇥ ⌧a

FFT

ma
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Measuring the axion distribution

39

Sampling axion field over many, N, coherence times:
 → Power spectrum ~ DM speed distribution f(v)
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The dark matter velocity distribution

40Ciaran O’Hare

dPs
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Rate of WIMP recoils:

Axion-photon power spectrum
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The dark matter velocity distribution
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dPs

d!
/

⇢ag2a�
m2

a

f(v)

dR

dEr
=

⇢0
mNm�

Z 1

v>vmin

vflab(v)
d�

dEr
d3v

Rate of WIMP recoils:

Axion-photon power spectrum

Fundamentally astrophysical, relies on a model 
for the galaxy
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The Standard Halo Model

f(v) ⇠ exp

 
� |v|2

v2
rot

!

v
rot

= 220 km s�1

41

Velocity dist. locally:
Halo

Disk
Bulge

8 kpc

⇢(r) ⇠ r�2



Ciaran O’Hare

A dark matter halo (really)

Scramble

Streams

Satellites

t
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• Launched in 2013
• Will operate until ~2022
• 1.7 billion stars (1% of MW)
• Parallax+proper motion on 1.3 billion
• 20 million stars with distance precise to 1%
• 40 million stars with tangential velocity precise to < 0.5 km/s
• 7 million stars with full 6D solution (x,y,z,vx,vy,vz)

Compared to predecessor, Gaia has 10,000 times 
more stars, over a volume 100,000 times larger, 

with 1000 times better accuracy

Gaia

43



 Northern sky  Southern sky

ESA
44
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S1
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The 
Sun

Galactic 
centre

The S1 stream
•Most prominent Gaia 

substructure encompassing 
the Solar System 

•Likely the remnant of a large 
(Fornax-sized) dwarf 
spheroidal accreted around 
8-10 billion years ago

•S1 and other retrograde stars 
possibly linked to a larger 
“Sequoia” event. Also 
responsible for several 
anomalous retrograde 
globular clusters (see 
1904.03185)

Ciaran O’Hare



Sun

S1 Stream

S1 is on a retrograde infall, so impacts the solar
system at high speeds

Dark matter wind→ A dark matter hurricane?



O’Hare et al. [1807.09004]
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Modelling S1



0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5
10

-3

Modelling S1



52

0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10
-25

S1 stream

Frequency:

Axion haloscope:
Signal power 

vs time 
vs frequency

Time:
Stream

Ciaran O’Hare

O’Hare et al. [1807.09004]
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Summary

I like dark matter
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The Sausage
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The “Sausage”The “Halo”

Metal-poor halo
[Fe/H]<-1.5

• Round velocity ellipsoid
• ~30% of main sequence halo sample
• More metal-poor on average

• Highly eccentric radial orbits
• Dominant contribution ~50%
• Characteristic metallicity [Fe/H] = -1.4
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Distinct chemodynamical signature implies that the 
Gaia sausage formed after a large merger with a 
1011 Mo dwarf galaxy, 8-10 billion years ago

Helmi et al. 1806.06038

  Highly radial orbits 
suggest head-on collision 
with small impact 
parameter
Interpretation consistent 
with the break in stellar 
density at 20 kpc → pileup 
of stars at apocentre
 Associated with 8 known 
globular clusters

� ⇠ 0.9
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arXiv:[1810.11468]

New understanding of Milky Way halo 
→ New signal model for dark matter experiments

Ciaran O’Hare
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Impact of new model on WIMPs

Rotation speed
= higher average speed

+Sausage 
= more low speed DM

Mass

C
ro

ss
 S

ec
tio

n

New local density
= more DM

Summary of the updates included in the SHM++

Escape velocity
= shorter tail

Ciaran O’Hare

v0 = 233 km/s

𝜌0 = 0.55 GeV/cm3

vesc = 528 km/s



62Ciaran O’Hare

For axions…
•Increase in axion linewidth → weaker limits
•Increase in local density → stronger limits 
•Overall, SHM++ limits only about 8% stronger

-1 0 1 2 3 4 5

0

0.1

0.2

0.3
SHM still ok for axions, 

However…
→ Presence of the Sausage 
means the lineshape is much 
wider along the Galactic radial 
direction. Potentially important 
for axion wind and modulation-
based experiments
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→ Multiple competing 
effects mean that the 
differences between 
the two models are 
smaller than expected
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The S1 stream



Forming tidal streams

R

R-dR

R+dR

Satellite is pulled apart when the tidal force across it 
overcomes its own self-gravity

Dwarf galaxy, 
dwarf spheroidal,  
or globular cluster



Scramble

→ Informs about the granularity of DM halo
→ Traces the shape of MW potential
→ Can be used to constrain fuzzy DM

→ Distinguishing warm/cold DM
→ Targets for DM annihilation or decay

Importance for DM
Satellites

Streams

→ Clumpiness of the dark matter halo
→ Crucial input for all direct DM searches



Finding streams kinematically
“Angle-Actions” - map orbital parameters into variables that 
are conserved for orbits in slowly varying potentials
→ hence streams remain clustered in “action space” long after 
they have ceased to be visible in star counts

Computing these variables 
for stars requires full 
orbital information 
→ Need complete 6D 
kinematic data to find 
streams this way… Sanderson 

[1404.6534]
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Velocity dispersion: 
→ Suggests a dwarf spheroidal origin, around the mass of the 
present day Fornax satellite galaxy accreted over 8-10 billion years

S1 stream: what we know so far

vstr = (8.6, �286.7, �67.9) km s�1Galactic velocity:
→ Stream on a strongly retrograde orbit, so DM impacts us at high 
velocity  ~ 500 km/s

Dark matter content:
→ Upper bound: is probably the local DM density probed over 
length scales smaller than the stream
→ Lower bound: Progenitor very likely had dark matter but other 
than that we cannot say, must remain agnostic

�str = 46 km s�1

0 + ✏ < ⇢str < 0.55GeV cm�3
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DM in stream

LZ sensitivity 

Red regions: range of WIMP models for which the stream can be 
distinguished from the halo in LZ at 3 sigma 
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Stream only
 “detectable” here

Ciaran O’Hare



100 101 102 10310-50

10-48

10-46

10-44

10-42

10-40

1   
0.5 
0.2 
0.1 
0.05
0.01

S1 in DARWIN

70

DARWIN 
sensitivity 

Red regions: range of WIMP models for which the stream can be 
distinguished from the halo in DARWIN at 3 sigma 
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Fraction of total 
DM in stream
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Fraction of DM in 
stream

CYGNUS sensitivity
(Gas TPC with He+SF6) 

Green regions: range of WIMP models for which the stream can be 
distinguished from the halo in CYGNUS at 3 sigma 

S1 in a directional detector

Directionality 
improves sensitivity

 to stream 
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Annual modulation
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Axion experimental projections
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Impact of streams on axion searches:

A cold S1 
stream improves 
axion sensitivity

Axion 
searches like 
sharp signals
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