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Aim of this talk: explain this busy plot
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python code and constraints .txt format can be found at cajohare.github.io / AxionLimits/



The axion, or axion-like particle (ALP)?

Minimal working definition: New light pseudoscalar, with coupling to
photons and / or derivative couplings to fermions

1 ]- a iyyy a
L = 5 (0,a) (0" a) ngaz J LaF,, F" + 6,@2 gmw (¢V“V5¢)

+ a few model-dependent assumptions

— Usually pseudo NG boson of spontaneously broken U(1)pq
— Could solve strong CP problem (= QCD axion)

— Could be galactic DM

— Could be produced in astrophysical environments
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+ a few model-dependent assumptions

— Usually pseudo NG boson of spontaneously broken U(1)pq
— Could solve strong CP problem (= QCD axion)

— Could be galactic DM

— Could be produced in astrophysical environments



Coupling to the photon

1 .
L = 4gma(x, t)F, F* = gurva(x,t)E - B
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Coupling to the photon

1 ~
%
L = 4_gcwa('x, t)F, F* = gurva(x,t)E - B
Photon — Axion Axion — Photon
/ /
........ a/ a
B B

'MOdel independent test Of the()ry oTyplcally Stronger Signal
e Weak /ambiguous signal: relies on photon *Relies on a source of axions
disappearance, or some oscillations due to (introducing some model dependence)

axion-photon mixing



Photon — Axion Axion — Photon

ﬂ [1801.08127]

Detector 10+
T : :
5 - Sun
o ' | | Betelgeuse (SN)
S / e
= || Dark radiation
< -10F *_

: Relic supernova axions
B-field B-feld |
: : : : : : ! ! : : : |
0 5

log p(eV)
See also: collider searches for
heavy ALPs

(I won’t talk about these)
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QCD axions
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Two popular UV completions

¢ KSVZ (or Hadronic) models: New heavy
quark(s) charged under U(1),, E/N =0

[GeV 1]

e DFSZ models: SM quarks charged under U(1)rq
+ two Higgs doublets, E/N =8/3 or2/3
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_ 107" — KSVZ-like models with 1 new heavy
¢~ 1014 quark. Band covers all possible
b% 10-15 representations under SU(3)-xSU(2)ixU(1)y
— satisfying various theoretical conditions
1016 (no Landau poles below Planck scale and the
10-17 quark itself is not cosmologically stable)
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Photophilic axions

Several models of varying contrivance
1611.09855] [1709.06085
1802.10093] [2102.00012]

[GeV 1]

\ Photophobic axions
e.g. accidental cancellations
(can happen if /', > 1[1705.05370])
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The only truly model-independent test of the axion
ALPS/OSQAR: long magnet, light-shining through a
wall

CROWS: resonantly enhanced photon regeneration
PVLAS: rotation of photon polarisation due to axion-

. >esiQY | photon mixing with E” (vacuum dichroism and
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White dwarfs: initial-final mass relation
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CAST: Solar axions converting into
X-rays inside long B-field
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Light ALP-photon oscillations in astrophysical B-fields
(Galaxies, galaxy clusters, and the Milky Way)
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Light ALP-photon oscillations in astrophysical B-fields
(Galaxies, galaxy clusters, and the Milky Way)
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Ratffelt & Stodolsky 1988

(https:/ /inspirehep.net/literature / 253874)

' B-field

10n mixing in a

Photon-ax



https://inspirehep.net/literature/253874

. e o . . Ratfelt & Stodolsky 1988
PhOton-aXIOn mIXIng ln a B-fleld (https:/ /inspirehep.net/literature /253874)
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B - Ly = ié’ua@”a 2m2a F.,F" 4+ govaE - B

Ap
equation for 8

¢ ' | Linearised wave
W +
photon-axion mixing
Ay =

2

Mixing element Axion mass element ~ Photon mass element
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Axion only mixes with A, so rotate into new
basis and solve like neutrino oscillations:



Axion only mixes with A, so rotate into new

basis and solve like neutrino oscillations:

Probability for photon to convert to axion
after travelling distance z:

Where,

40 )= (<t ey (M)

(0| a(L) P = Pay = sin? 20) s ()

cos(26)

1 2, 2 _ 2
0 = — arctan ( ! > A = ™ wpl‘L
2 Apl _ Aa 4w



Photon-axion conversion probability
For very light axions, m,, is negligible compared to @
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Sensitivity with future telescopes
e.g. ATHENA, Lynx
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Solar v

Cosmology: Primarily constraining thermally produced Horizontal branch
ALPs, which can then decay into two photons

a 047
........ T
My Gar

 BBN/Ness: ALP decays can alter element abundances
and contribute to AN, 4 [2002.08370]

*Jonisation fraction: ALP decays can ionise neutral
hydrogen [1110.2895]

eEBL: photon line at m_/2 in the extragalactic
background light [1110.2895]

e X-ray: photon line in X-ray data [1110.2895]
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S8 Supernova 1987A: Production of
~MeV ALPs would have altered the
neutrino and y-ray emission
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behave like a classical field :

Dark matter axions
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Axion electrodynamics
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L= FuF" - J'A, 94” FF"aq




Axion electrodynamics

1 -~
L= FuF" - J'A, 94” FF"aq

S d

*EL equation for photon shows we can interpret 9, F*" = J" — g4+ F,,0,.a
axion as the source of an effective current:



F,., =0,A, —0,A4,
v = Lawasp

Axion electrodynamics B— Va4
1 ) N B=VxA .
L= FuF" - J'A, 94” FF"aq

S d

*EL equation for photon shows we can interpret 9, F*" = J" — g4+ F,,0,.a

axion as the source of an effective current: T

J!' = gory(—B - Va, —E x Va + 0,aB)



F,., =0,A, —0,A4,
v = Lo

Axion electrodynamics B— Va4
1 ) N B=VxA .
L= FuF" - J'A, 94” FF"aq

S d

*EL equation for photon shows we can interpret 9, F*" = J" — g4+ F,,0,.a

axion as the source of an effective current: T

J!' = gory(—B - Va, —E x Va + 0,aB)

* Rewrite Maxwell’s equations V-E=p
withJ = J+ J V- -B =0
0B
E =
V X 5
V X B = OE - J

ot



F,., =0,A, —0,A4,
v = Lawasp

Axion electrodynamics B— Va4
1 ) N B=VxA .
L= FuF" - J'A, 94” FF"aq

S d

*EL equation for photon shows we can interpret 9, F*" = J" — g4+ F,,0,.a

axion as the source of an effective current: T

J!' = gory(—B - Va, —E x Va + 0,aB)

* Rewrite Maxwell’s equations V-E=p—9.,,B-Va
withJ = J+ J V- -B =0
0B
E =
V X o>

OE oa
B — I T a
V X Y J gW(EXVa 8tB)




Ampere’s law




Ampere’s law

OE / da
V xB= 5 + —gm(ExVa 8tB)




Ampere’s law

OE / da
VXB_8t+ — Jary M@ ﬁtB

Usually not important unless experiment larger than

Ag~ (Va)y™l ~mv)y™t ~10°4

(Most experiments are actually around 4. ~ 1/m, or smaller)




Ampere’s law

9) D da

B = - g, —B
VX ot I oy




Ampere’s law

9) D da

- oy 77 B
ot ot Oscillating

V x B =

axion field



Ampere’s law

OE da
V X B = | Ja~ B
Ot Ot .
Oscillating
Axion-induced axion field

electric field



Ampere’s law

OE da
VX B =gt ar gy B
Axion-induced Oscillating
magnetic field Axion-induced axion field
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Ampere’s law

OE da
VX B =gt ar gy B
Axion-induced Oscillating
magnetic field Axion-induced axion field
electric field

What kind of experiment do we need to measure this?
— Depends on size of Compton wavelength (1/m ) relative to

the size of some instrument, say O(metres)



Haloscope strategies

<ueV: Compton wavelength long relative to experiment. DC magnetic field
induces oscillating magnetic field

oa
V x B, = — o~ Bo—
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~1-100 ueV: Compton wavelength similar scale to experiment. Axion sources
oscillating E&M-fields — couple to an EM mode inside a cavity
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Haloscope strategies

<ueV: Compton wavelength long relative to experiment. DC magnetic field
induces oscillating magnetic field

0
VxB,=  —guBo—

ot

~1-100 ueV: Compton wavelength similar scale to experiment. Axion sources
oscillating E&M-fields — couple to an EM mode inside a cavity

OE,, oa
B, = 4~ DB
VX gt JrP0 %y

> 100 ueV: Compton wavelength short relative to experiment. Axion

generates radiation — arrange experiment to have constructive interference

oE,, oa

— aB
gt I 05
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Cavity haloscopes

Most well-developed technique. High-Q cavity
with modes that couple to the axion giving strong
narrow-band signal, a range of axion masses can

be scanned using tuning rods

Neutron star

Preamplifier Mixer

Oscillator

—>!<— Av, [ v,~ B~ 1076

Frequency

v = macz/h
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— essentially an LC-circuit. Axion effective
current sources a B-field inside a pickup loop.
Broadband and resonant capabilities

Oa
ot



0E, Oa

10 V X Ba =175 71 9arBogy
10~

1078

10_9 S()lar 1/ SN1987A

1010 . Horizontal branch

Mrk 421 ~
1 HESS

Fermi

SN1987A
Chandra

Fermi-SNe
‘
1 O —_ 1 1 HYdra %ig‘g}%
A
M87. _ ©

uoIjdeIJ
DTJeSTUO]

II'TS XINAV

BASE

1070 = MADMAX “Dielectric haloscope” [2003.10894]
<1071 o Constructively add axion-induced radiation
501015 4 emitted by a series of dielectric surfaces.
10-16 o Tuneable via disk-spacing
1017 o ~
10718 ; =
10_19 - TTTT T T AL AL BRI BRI RN B SRR R
xs’ggyAxsr“%ngxﬁyavSﬂKSVbxﬁ)qviiaﬂYﬁ\D;%UB

Mg [eV]

dinloctric dises Pasabolic oryopenK Mirror Dielectric Disks Receiver
Q:~1m Mirror velume



10~
10~
1073
1077 CAST

10 SHAFT
10~ DSNALP | Neutron stars

Fermi-SNe Mrk 421

- Hydra KBS id
1 O 11 . %&’& Fermi
S

M87 SN1987A

Solar v

Horizontal branch

uotjoery
UOT}esIuo]

10—12
10—13
>~ 10
50 1915
10—16
10—17
10—18
10—19

II'TS XINAV

[GeV 1]

<)
)
© ypumy

&

SN1987A
(v)

SN]%’;

s
%
A

X

7

Q
&

QO 9 &% 7 6 5 A 25 2 A Q \ 0 &) A o, o 7
0 20 070 40 074070740 0 40 T AT A0 AT AT AT 4@ 48 4@

mg [eV]



—

|
<

\Y

o

3
p—
N

|§m| |G

p—
-

— —
CD| -
p—
N

p—
-

Frequency [MHZz]
103 10*

10~
CAST

g 10—11

|
—
-

|
p—
6V

|
p—
o1

Microwave/RF range:
Most experimental
activity, but also strong
theory motivation for
DM in this range

(pre/post inflationary axions)



Rochester-Brookhaven-Fermilab
Frequency [MHz] and University of Florida
103 104 early O(litre) cavity experiments

PhyS. Rev. Lett. 59, 839 (1987)
Phys. Rev. D 42, 1297 (1990)
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Frequency [MHz]

10°

10%

-

ADMX (U Washmgton)

Only expt. probing DFSZ

First result: [astro-ph/9801286] from 1998,
easy to forget there is >20 years of work
represented here

— Sensitivity scales as g, ~ T-1*, and

you need to scan!



HAYSTAC (Yale)

. Frequency [MHZ} . 2008.01853

F =
AYSTA

HAYSTAC

Main innovation is to put a
microwave EM-field in a
“squeezed state” which allowed

| - '1'0'_5 T '1'0'_ . them to overcome a fundamental
m, [eV] quantum noise limit
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104

CAPP (Centre for axion and
precision physics, Korea)

2012.10764, 2008.10141, 2001.05102

Investigating various high-
mass designs, including
multi-cell cavities
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DM axions in neutron star magnetospheres

DM axions fall in to magnetar (B~1010 T)
and resonantly convert at a radius when
plasma freq. = axion mass

— ueV axions observable via sharp RF line

Pshirkov & Popov [0711.1264]
Huang et al. [1803.08230]



DM axions in neutron star magnetospheres

Pshirkov & Popov [0711.1264]
Huang et al. [1803.08230]

DM axions fall in to magnetar (B~1010 T)
and resonantly convert at a radius when
plasma freq. = axion mass

— ueV axions observable via sharp RF line

Heavy uncertainties from

* DM density around NS

» Magnetic field model

* Physics of axion-photon conversion
in turbulent B-field / plasma
See e.g. [2107.07399], [2104.07670]
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Searches for radio
lines from axions

falling into NS

magnetospheres

Darling/Battye et al.
2008.11188], [2008.01877],
2107.01225]

Jansky VLA data on
magnetar PSR J1745-2900 at

galactic centre

Foster et al.
Green bank/ Effelsberg
observations of galactic

centre & 1solated NSs
[2004.00011]
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For another time: Constraints on other axion couplings

Axion-electron Axion-nucleon  Axion decay constant

v, [Hz]
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