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Evidence for dark matter across all length scales and across cosmic time

~100 pc ~Kkpc ~100 kpc ~Mpc >Gpce

Affects Dominates Supports Fills Seeds

nearby dwart galaxy galaxy large scale
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Why is dark matter a problem for physics?
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For describing astrophysical systems “dark
matter” is just a label given to a set of observations

It is actually an incredibly elegant solution
— you can explain the dynamics of
structures across the Universe if you just
make ~85% of all mass invisible
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For describing astrophysical systems “dark L8

/

matter” is just a label given to a set of observations & # . %38

It is actually an incredibly elegant solution

— you can explain the dynamics of o, T
structures across the Universe if you just X Yo'

make ~85% of all mass invisible N g T

The problem lies with particle physics
we have no fundamental explanation for
what the identity of dark matter is, how

it was created, or how it connects to the
Standard Model
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Only 1 of these particles needs to be:

Massive

Electrically neutral
Cosmologically stable
Non-relativistic

Produced in large quantities in the
early universe



Dark mediator
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Only 1 of these particles needs to be:

Massive

Electrically neutral
Cosmologically stable
Non-relativistic

Produced in large quantities in the
early universe

But, we know for sure that they
cannot interact strongly
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Beyond colliders: extremely light, feebly-coupled particles

Many new hypothetical particles associated with some new physics at a very high
energy scale A, their low-energy couplings to the Standard Model will be

suppressed by that energy scale

1

N_
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— By testing for very feeble interactions, indirectly we are able to access
physics at high energies, potentially well above the collider scale



How to search for particles with tiny couplings
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How to search for particles with tiny couplings

Measure numbers Sample a lot of
very precisely particles
Precision | liny | Astrophysical Dark
tests of QED HHECTOSCOPIE environments matter
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Rare processes High intensity collider
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The axion

How to search for particles with tiny couplings

Measure numbers Sample a lot of
very precisely particles
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What is the electric dipole moment of the neutron?

d,, ~ etm
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What is the electric dipole moment of the neutron?
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What is the electric dipole moment of the neutron?

d,, ~ etfm

Put some spin-

polarised neutrons
in E, B fields

vy = 2|un B

Measure spin
precession
frequencies
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Calculate
neutron EDM
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—_— Fundamental
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A S . What do they see?

Recent measurement [2001.11966]}
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What do they see?

Recent measurement [2001.11966]}
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Conclusion: The strong interaction seems to be|
conserving CP when it generically shouldn’t
— The strong CP problem




The solution is closer than it seems...
— The problem is that 8 is simply a parameter that we cannot change but if it were
dynamical it would be able to relax to its energy minimising configuration

E(0)
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The solution is closer than it seems...
— The problem is that 8 is simply a parameter that we cannot change but if it were
dynamical it would be able to relax to its energy minimising configuration
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Solution of Peccei & Quinn: what if this could happen?



Interpret this energy as the potential of a new particle: the axion

Created at some very high energy scale, f,

Ealf,)
—2r —T T 27 JTG
Very light mass Suppressed couplings
(e.g. to the photon)
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Say [GeV 1]
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Where 1s the axion?

QCD axions

— golve the

Strong CP problem
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Axion can couple to photons, electrons, ...
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Where could these processes be happening?



Stars contain a lot of ions, and a lot of photons
— Stellar plasmas should be factories for particles
with masses smaller than their core temperatures

m, < 1-100 keV

Axions emitted by stars,
Axions cooling stars



Globular clusters: ideal testing ground for stellar evolution
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Emission of axions influences stellar evolution

Capozzi & Raffelt [2007.03694]

— Emission of low mass particles provides : o '."]('UCe'n"
additional cooling to the helium core, thereby 2
delaying the onset of helium burning and % | ® NGC 4258
allowing a brighter tip of the red giant branch S w Cen update
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Axion-photon coupling [GeV ']
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Axion-Photon coupling Axion-electron coupling
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Axion-Photon coupling

Light-shining-through-walls

Astrophysics

Telescopes
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Axion-Photon coupling
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Photon-axion mixing in a B-field
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Photon-axion conversion probability
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Astrophysics has a lot to contribute to the search for new particles

In particular improved understanding of environments like stellar
interiors, and the magnetic fields of galaxies and clusters, will help
greatly in bounding the dauntingly large parameter spaces we have
to search over... and potentially find something unexpected



How to search for particles with tiny couplings

Measure numbers Sample a lot of
very precisely particles
Precision | Hiny | Astrophysical
tests of QED HHETOSEOPIE environments Dark
forces matter
Rare nuclear High intensity collider

decays experiments (beam dump)
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How much dark matter is around?

Local density of dark matter (i.e. in this room!)
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How much dark matter is around?

Local density of dark matter (i.e. in this room!)

‘va.-!l.- ab‘ g uuuuuu
"o Pdm ~ 0.4 GeV/ cm® <«— Particle physicist’s unit

‘ - ~ 0.01 Mg, /pc® «— Astrophysicist’s unit
S g ¥ ~ 2 protons/teaspoon

B s ~ 1sand grain/Sydney harbour

~ 1 cockatoo/Earth



“Wave like dark matter”

Extremely light dark matter a(x.1) ~ V2Pa (Wt —p-x+ )
particles will behave collectively Ma L

like an oscillating and . wﬂ? m‘I .
undulating classical field DM mass
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...Still need to overcome the extremely interaction strength

But... If we try to convert the DM oscillations inside a device which has a resonance
at the same frequency then we can get resonant amplification of the power output
— “Haloscope”
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...Still need to overcome the extremely interaction strength

But... If we try to convert the DM oscillations inside a device which has a resonance
at the same frequency then we can get resonant amplification of the power output
— “Haloscope”
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Looking for a signal above noise...
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Looking for a signal above noise...
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Looking for a signal above noise...
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Looking for a signal above noise...
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Noise temperature
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Thermal Quantum Amplifier

Even in the zero-temperature case there is irreducible quantum noise
that is now actually limiting the sensitivity of dark matter searches.



How to beat the Standard Quantum Limit (SQL)

Quantum squeezing Single photon sensors

e.g. HAYSTAC [2008.01853] e.g. Qubits [2008.12231]
SNSPDs [2111.12103]
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So far only discussed very light feebly interacting
particles, what about more massive things?
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zeV aeV feV peV neV peV meV eV |]]keV MeV GeV TeV kg Mg Mg 106 M,

| de Broglie wavelength must fit |
| inside dwarf galaxies ~ 100 pe |

| Must £ill dwarf galaxies |

Possible mass range only
bounded by ~75 orders of
magnitude, but it’s a start
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Types of dark matter
MaSS s

Wave-like Particle-like
(Must be bosonic)

Continuously oscillating Discrete particles
and fluctuating field. that occasionally colliding with
can couple to other fields each other or other stuff

(e.g. the electromagnetic one)
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Particle-like dark matter

keV MeV GeV TeV

‘—= ==l'

We know p ~ 0.3 GeV cm™

and v ~ 300 km /s
from astrophysics

High number density, but low Energetic recoils (>keV) but very
energy deposits low number density
— need to be sensitive to low- — need to have huge detectors
energy signals ~
@

8.

) ©




Particle-like dark matter

Emphasis on low-energy Emphasis on big

— electronic recoils — large detector bulk of heavy material
— collective excitations

(Skipper) CW
conduction pixel

valence band
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How do we make sure we
can really discover DM
interactions, and are not
just on the road to seeing
an anomaly we cannot
explain?
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What material do you need to do directional detection of
particle interactions?

Liquid — particle tracks typically shorter (~10-100 nm) than the
diffusion scale in the detector so are washed out almost straight away
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What material do you need to do directional detection of
particle interactions?

Liquid — particle tracks typically shorter (~10-100 nm) than the
diffusion scale in the detector so are washed out almost straight away

Gas — tracks typically longer than diffusion scale, so this can work as
long you can image ionisation at a high-enough resolution

Solid — tracks tiny (~nm) in size but do not diffuse. Can work as long
as you can do nanoscale imaging of the interior of a solid material



Directionality in solids Directionality in gases
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What material do you need to do directional detection of
particle interactions?

Liquid — particle tracks typically shorter (~10 nm) than the diffusion
scale in the detector (micron) so are washed out almost straight away

Gas — tracks typically longer than diffusion scale, works as long as you
don’t allow them to diffuse much and can image ionisation at a high-

enough resolution

Solid — tracks ~nm in size but do not ditfuse. Can work as long as you
can do nanoscale imaging of the interior of a solid material



What material do you need to do directional detection of
particle interactions?

Liquid — particle tracks typically shorter (~10 nm) than the diffusion
scale in the detector (micron) so are washed out almost straight away

Gas — tracks typically longer than diffusion scale, works as long as you
don’t allow them to diffuse much and can image ionisation at a high-

enough resolution

Solid — tracks ~nm in size but do not ditfuse. Can work as long as you
can do nanoscale imaging of the interior of a solid material

Nanoscale information storage?



DNA detector?
2105.11949

Particle detection and tracking with DNA

Ciaran A. J. O’Hare,"% * Vassili G. Matsos,? Joseph Newton,”> Karl Smith,? Joel Hochstetter,” Ravi Jaiswar,’
Wunna Kyaw,?> Aimee McNamara,* Zdenka Kuncic,” Sushma Nagaraja Grellscheid,’> and Céline Boechm!+?

'ARC Centre of Excellence for Dark Matter Particle Physics, The University of Sydney, NSW, Australia
2School of Physics, Physics Road, The University of Sydney, NSW 2006 Camperdown, Sydney, Australia
3Garvan Institute of Medical Research, NSW 2010, Darlinghurst, Australia
*Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
>Computational Biology Unit, Department of Biological Sciences,

University of Bergen, Thormohlensgt 55, Bergen N-5008, Norway




DNA-based particle detector?

Step 1: acquire some double or single-stranded nucleic
acids, each with a known sequences of bases
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Step 1: acquire some double or single-stranded nucleic
acids, each with a known sequences of bases

Step 2: Attach them in a regular pattern to a thin
substrate made of a high density material

Step 3: Attach a paramagnetic bead to each strand
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DNA-based particle detector?

Step 1: acquire some double or single-stranded nucleic
acids, each with a known sequences of bases

Step 2: Attach them in a regular pattern to a thin
substrate made of a high density material

Step 3: Attach a paramagnetic bead to each strand
Step 4: Particles come in and break a sequence of bases
Step 5: Broken strand segments fall down

Step 6: System of microfluidics transports the strand

segments to a PCR machine which amplifies them and
the original (x,y,z) positions are reconstructed

Incoming

particle

Microfluidics

~ ~.
Recoil

>>
PCR machine



DNA-based particle detector?

Incoming
particle

How crazy 1is it?

Putting aside the obvious
experimental challenge, there is a
clear advantage in the context of
directional detection

— No diffusion and no nanoscale

~
e
®

imaging required

i 1 1 | »
Microfluidics PCR machine

Recoil
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N — Conclusion: recoils >10 keV

_700L leave identifiable particle tracks,

Now need to build components of
the detector in the lab



Summary

Many exciting for different fields to contribute to fundamental physics

Astrophysics: High energy environments like stellar interiors are potentially factories for
new feebly-coupled particles. Astrophysical arguments are essential for bounding the
parameter spaces we have to search across

Quantum sensors: new techniques such as single photon counting are needed to improve
searches for new light fields by helping us to beat the fundamental quantum noise limit.
Solid state physics/nanoscience: novel materials are needed that can detect extremely low-
energy interactions below the band-gaps of semiconductors, e.g. via collective excitations
Biophysics: is there the possibility to use advances in biotechnology to create a new type of
particle detector?
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Beam angle: 0;, = 0° (side-on)
10° 10! 10? 10°
TTTT] TTTT] TTTT]

Aree) R’ . Main conclusions from the ;ym3 unit simulation

= Track directions well-preserved. Around

25" angular res. for initial recoil direction

e Particle ID and energy reconstruction not
really possible, need to look at tracks over
many units and measure dE/dx

e Need to find a good purpose tor
the idea...

Beameney [keV]I N [210511949]
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DNA origami
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Experimental side , ,
A Pocket-Sized Convective PCR Thermocycler**

. Nitin Agrawal, Yassin A. Hassan, and Victor M. Ugaz*
 Detector construction —

J

DNA-origamists can make practically

= Resistively
¢ heated block

lg

Thermal
: interconnections

anything

Anneaing Denaturing
60 °C 95°C

e PCR machines — cheap, commercially

available, portable, and fast. '

https:/ /pubmed.ncbi.nlm.nih.gov /17465434 /
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Experimental side

* Detector construction —
DNA-origamists can make practically
anything

e PCR machines — cheap, commercially
available, portable, and fast.

e DNA-substrate attachment —
standard protocols (looking at this in
the lab right now!)

Parallel Arrays of Geometric Nanowells for Assembling Curtains of
DNA with Controlled Lateral Dispersion

Mari-Liis Visnapuu,:’“§ Teresa Fazio,”® Shalom Wind,” and Eric C. Greene**

Department of Applied Physics and Applied Mathematics, Center for Electron Transport in Molecular
Nanostructures, NanoMedicine Center for Mechanical Biology, Columbia University 1020 Schapiro
CEPSR, 530 West 120th Street, New York, New York 10027, and Department of Biochemistry and
Molecular Biophysics, Columbia University, 650 West 168th Street, Black Building Room 536,
New York, New York 10032

Received June 6, 2008. Revised Manuscript Received August 18, 2008
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Experimental side

* Detector construction —
DNA-origamists can make practically
anything
e PCR machines — cheap, commercially
available, portable, and fast.

e DNA-substrate attachment —
standard protocols (looking at this in

the lab right now!)
* Main challenge — stability of detector

and ensuring strands are collected,
maybe a total rethink of design is in
order (DN A-based harddrive?)

DNA punch cards for storing data on native
DNA sequences via enzymatic nicking

S. Kasra Tabatabaei'!, Boya Wang?®8, Nagendra Bala Murali Athreya>8, Behnam Enghiad?,
Alvaro Gonzalo Hernandez>, Christopher J. Fields® ©, Jean-Pierre Leburton3, David Soloveichik?,

Huimin Zhao® "47™ & Olgica Milenkovic3™

_|_

Single-molecule imaging of DNA curtains reveals
mechanisms of KOPS sequence targeting by
the DNA translocase FtsK

Ja Yil Lee*", llya J. Finkelstein®', Estelle Crozat™?, David J. Sherratt®, and Eric C. Greene®<>

ent of Biochemistry and Molecular Biophysics and “‘Howard Hughes Medical Institute, Columbia Univers
i University of Oxford, Oxford OX1 3QU, United Kingdom

ity, New York, NY 10032; and °Department



Attachment of

paramagnetic beads
to the DNA strands

magnetic bead

o v/ biotin labeled
DNA

[t]

FIG. 3. Diagram from [16] illustrating the DNA to paramagnetic
bead attachment and manipulation via an external magnetic field.
The connection occurs due to the extreme affinity of Streptavidin
(a type of protein) to biotin molecules (vitamin H). Streptavidin is
known to form one of the strongest bonds known in nature with bi-
otin.

https: / /iopscience.iop.org/article/10.1088 /1478-3975/12 /4 /046011
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Ampere’s law

OE da
VX B =gt ar gy B
Axion-induced Oscillating
magnetic field Axion-induced axion field
electric field

What kind of experiment do we need to measure this?
— Depends on size of Compton wavelength (1/m ) relative to

the size of some instrument, say O(metres)



Haloscope strategies

<ueV: Compton wavelength long relative to experiment. DC magnetic field
induces oscillating magnetic field
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<ueV: Compton wavelength long relative to experiment. DC magnetic field
induces oscillating magnetic field
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Haloscope strategies

<ueV: Compton wavelength long relative to experiment. DC magnetic field
induces oscillating magnetic field

0
VxB,=  —guBo—

ot

~1-100 ueV: Compton wavelength similar scale to experiment. Axion sources
oscillating E&M-fields — couple to an EM mode inside a cavity

OE,, oa
B, = o 5
VX gt JrP0 %y

> 100 ueV: Compton wavelength short relative to experiment. Axion

generates radiation — arrange experiment to have constructive interference

oE,, oa

— aB
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Horizontal branch
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Sensitivity with future telescopes
e.g. ATHENA, Lynx
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Solar v

Cosmology: Primarily constraining thermally produced Horizontal branch
ALPs, which can then decay into two photons

a 047
........ T
My Gar

 BBN/Ness: ALP decays can alter element abundances
and contribute to AN, 4 [2002.08370]

*Jonisation fraction: ALP decays can ionise neutral
hydrogen [1110.2895]

eEBL: photon line at m_/2 in the extragalactic
background light [1110.2895]

e X-ray: photon line in X-ray data [1110.2895]
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S8 Supernova 1987A: Production of
~MeV ALPs would have altered the
neutrino and y-ray emission
12109.03244]
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