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CEvNS will be observed in
DM experiments very soon!

°B solar and atmospheric
neutrinos are going to be
the troublemakers, they
look just like

6 GeV and 100 GeV
WIMPs in Xenon



The neutrino “floor” as it’s usually presented
e.g. for LXe TPCs
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The full story:

There 1s no neutrino “floor”

DM /CEvVNS signals not identical

—

with high statistics, an

experiment can bootstrap itself
through the background uncertainty
using spectral information (this is

text

ook statistics really, it’s the limit when

the |

likelihood dominates over the prior)
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1079 1073 10~ 10" 10° 10° The full story:
- my = 6 GeV There is no neutrino “floor”
larget: Xenon 3 pm/CEvNS signals not identical
cg 1042 — with high statistics, an

experiment can bootstrap itself
through the background uncertainty

using spectral information (this is
textbook statistics really, it’s the limit when
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the likelihood dominates over the prior)

— Required exposures are
large yes, but there can
never be a hard sensitivity
floor unless the signal and
background are identical
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How should we define it then?

There is no “floor”, but we can
quantity the neutrino “fog” by
looking at the scaling



Exposure [ton-year|
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How should we define it then?

There is no “floor”, but we can
quantity the neutrino “fog” by
looking at the scaling

Define:
n=—(dlno/dInN)™*

Son = 2 for Poissonian

background subtraction and
n > 2 for worse than
Poissonian



Gradient of discovery limit, n = —(dInc/dInN)~!
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Gradient of discovery limit, n = —(dInc/dInN)~!
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Gradient of discovery limit, n = —(dInc/dInN)~!
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n parameterises the
“fogginess” of the
neutrino fog

— note that it’s not
uniformly foggy
everywhere

The “edge” of the fog (n>2),
once you get past it, you can
never do better than
Poissonian again.

My 2¢: this is what should
be shown on plots



If we want to..

1. Continue the search for DM into the neutrino fog
Reasons to want that: Athron+ [1705.07935], Beskidt+ [1703.01255],

Roskowski+ [1411.5214],

Baker+ [1912.

Hisano+[1104.0228], Arcadi+|1711.02110],
02830], Arina+[1912.04008] ...

2. Be able to study both DM and neutrino signals in experiments
Reasons to want that: Harnik+ [1202.6073], Pospelov+ [1103.3261], Franco+[1510.04196],

Schumann+[1506.08309], Strigari [
Cerdeno+[1604.01025], Dutta+[1901

1604.00729], Dent+[1612.06350], Chen+[1610.04177],
.08876], Lang+[1606.09243], Bertuzzo+[1701.07443],

Dutta+[1705.00661], Aristizabal Sierra+[1712.09667] ...

Then we need to clear the fog



How to venture into the neutrino fog:

5 methods, ordered (sort of) in increasing effectiveness

1. Detect a lot ot events

2. Use annual modulation

3. Have multiple target nuclei

4. Improve neutrino flux measurements

5. Use directional detectors



How to venture into the neutrino fog:

5 methods, ordered (sort of) in increasing effectiveness

——Petectp-tot-of-aventc—

2. Use annual modulation
3. Have multiple target nuclei
4. Improve neutrino flux measurements

5. Use directional detectors



SI WIMP-nucleon cross section [cm?]

1. Annual modulation

Analyse energy information only
{ Analyse energy+event time information
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Xenon | Analyse energy information only

: 1 Analyse energy+event time information

Increasing exposure

Annual modulation is a small
(% level) effect, so it can only

help if there are enough events

to see it in the first place

WIMP mass [GeV]
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2. Flux uncertainties

The better the neutrino flux prior is,
the better you understand the
background to begin with

— onset of neutrino fog is pushed
lower



2. Flux uncertainties Low-E tail of atmospheric flux not yet measured at the

relevant energies, 25% uncertainty is advisory from

vitype O(1+00/ q>)_2 ’ 10° simulations. This is an important background for detecting
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2. Effect of Flux uncertainties (for illustration only)
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3. Target complementarity: Xe & Ar
High mass (>100 GeV) DM (SI) versus Atmospheric neutrinos
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Taken to the extreme: Ultimate multi-ton Xe+Ar analysis

“Standard” strategy:
Xenon experiment only

“Ultimate” strategy:

+ Xenon/ Argon combined analysis
+annual modulation

+Atmospheric flux uncertainty 25%— 10%

My 2¢: Most of this improvement is driven by neutrino
flux improvement. Not clear to me if in practice the gain
from having both Xe+Ar would outweigh the combined

systematic uncertainties from two experiments

SI WIMP-nucleon cross section, Ugl [cm?]

p—

3
S
e~

p—

=
N
Q1

10—46

10—47

10—48

10—49

1079

= Standard strategy (10° ty)
== Ultimate strategy (10 ty)

= = Standard strategy (10* ty)

Ultimate strategy (10* ty)

Q)
DARW

O’Hare [2002.07499]

= v-floor -
- (2013)
B U
WIMP mass, m, [GeV]

p—
-
€8]



How to venture into the neutrino fog:

5 methods, ordered (sort of) in increasing effectiveness

) oo annuelmodulation <«— Not good enough

Good, but

4. Improve neutrino flux measurements
not up to us

5. Use directional detectors
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5 methods, ordered (sort of) in increasing effectiveness

) oo annuelmodulation <«— Not good enough

Good, but

4. Improve neutrino flux measurements
not up to us

5. Use directional detectors



The DM flux on Earth is highly anisotropic and should align with our galactic rotation
— highly characteristic signal that is not mimicked by any background, and is robust
against particle-model and astrophysical uncertainties

Fluorine recoils [8-50 keV ] September 6
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A directional detector should be able to “see through” the neutrino fog



Subtracting the neutrino background with directionality

In an idealised case a directional experiment doesn’t see the background at all, its sensitivity
scales almost as ¢ « (MT) ™!, so how close can a real experiment get?
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What is required of a directional experiment to clear the neutron fog?
(see our review [2102.04596] for reasoning)

o Angular resolution <30° If you don’t achieve these then
: : directionality adds nothing t
» Correct head/tail >75% of the time Heconaliny acds JOEILS 10
the sensitivity (in the context of
* Fractional energy resolution < 20% the v background)
And achieved...

* At the level of individual events

* In as high a density target as possible (maximise target mass)

* Below <10 ke Vr (depends on nucleus, but usually CEVNS recoils are sub-10-keVr)
» With a timing resolution better than a few hours

Can this be done? — watch the talks in this session!



Takeaways

The neutrino floor is dead, long-live the neutrino fog

e The boundary of the neutrino fog can be defined when the scaling of an experiment’s
sensitivity drops below the Poissonian expectation (o o< (M T)~172)

e The imminent CEvVNS background will not halt any experiment’s progress, just slow it

e We should look to our friends in the neutrino community to improve uncertainties on the
fluxes (especially the sub-100 MeV atmospheric flux which is still unmeasured)

e Directional detection is the best way to get through the fog: a recoil imaging detector able
to reconstruct sub-10 keV tracks in 3D with head/tail information will barely even see the
neutrino fog.

e Forget daily /annual modulation, columnar recombination, target complementarity: They
are not efficient until the >100 ton-scale.
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Comparison with other definitions
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The neutrino “floor”
Defined in Billard et al. [1307.5458] and popularised by Snowmass "13 Cosmic Frontier report [1401.6085]
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The neutrino “floor”

Defined in Billard et al. [1307.5458] and popularised by Snowmass "13 Cosmic Frontier report [1401.6085]
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To ensure we are well into the systematics limited regime,
exposures were increased to obtain 500 neutrino events.
This line thus represents a hard lower discovery limit
for dark matter experiments. Interestingly, we can de-
note three distinct features in the discovery limits coming
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Neutrino “floors” beyond SI

— Not all possible DM-nucleon interactions suffer same saturation by CEvNS background
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Neutrino “floors” beyond SI
— Not all possible DM-nucleon interactions suffer same saturation by CEvNS background
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Neutrino “floors” beyond vanilla WIMP DM

DM-electron scattering

Essig et al. [1801.10159]
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More complicated DM models

DM + dark radiation from DM decay in the form of
SM-v / sterile-v
Nikolic et al. [2008.13557]
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Astrophysical uncertainties
O'Hare [1604.03858]
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Neutrino non-standard interactions

Aristizabal Sierra et al. [1712.09667]

Gonzalez-Garcia et al. [1803.03650]
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New mediators involved in CEVNS

Boehm et al. [1809.06385]
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Annual modulation
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Annual modulation

Neutrinos peak in s ,
DM peaks in June when

hen Earth i
January when Earth is Earth is facing the DM wind

closest to the Sun
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Annual modulation is a small effect, so

it can only help if there are enough
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HD TPC performance studies

Final goal for high-definition imaging of recoils in 3D, meeting low-energy
performance goals may not be so far away...
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CNN reconstruction of neutron-induced He recoils in BEAST TPC
J. Schueler, S. Vahsen (U. Hawaii)




Vahsen, CAJO+ [2008.12587]

Cygnus: projected sensitivity

Target gas, volume, and threshold are still under investigation, but there is scope
for world-leading (SD) limits even with a 10 m3 scale experiment (~2025-2030)
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...Angular performance

Everything gets worse at lower energies: = 251

Decreasing quenching factor, means recoils are 2407
harder to detect
Tracks get shorter — harder to measure directions

Contrast in dE/dx is lower, harder to measure
head-tail

All this makes it harder to distinguish ER/NRs, so
worse background rejection

N 2507

[o)

— Energy dependence of directional

2497

performance is very important, and
needs to be the focus of all
directional detection proposals
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Abstract

Searches for dark matter-induced recoils have made impressive ad-
vances in the last few years. Yet the field is confronted by several
outstanding problems. First, the inevitable background of solar neutri-
nos will soon inhibit the conclusive identification of many dark matter
models. Second, and more fundamentally, current experiments have
no practical way of confirming a detected signal’s galactic origin. The
concept of directional detection addresses both of these issues while
offering opportunities to study novel dark matter and neutrino-related
physics. The concept remains experimentally challenging, but gas time
projection chambers are an increasingly attractive option, and when
properly configured, would allow directional measurements of both
nuclear and electron recoils. In this review, we reassess the required
detector performance and survey relevant technologies. Fortuitously,
the highly-segmented detectors required to achieve good directionality
also enable several fundamental and applied physics measurements.
We comment on near-term challenges and how the field could be ad-
vanced.
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Further reading (of my own papers...)

[2203.05914] - Snowmass white paper on recoil imaging
[2102.04596] - a review of directional detection
[2002.07499] - directional detection in Xe/ Ar
[2008.12587] - directional detection with gas TPCs
[2105.11949] - directional detection with DNA
[2109.03116] - the neutrino fog
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