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How light can dark matter be if it is made of fermions?

Dwarf galaxy Sphere of degenerate fermions
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“Tremaine-Gunn bound”: Pauli exclusion principle prevents you

from cramming fermions lighter than ~100 eV into dark matter halos



Bosonic “wave-like” dark matter

Occupation number:

N = (ppm/m) X )‘?1]3

39 Macroscopically
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Wave-like dark matter mass range
yeV zeV aeV feV peV neV pueV meV eV

Particle
\ \ \ DM

“Fuzzy dark matter” “Black hole superradiance”
Wave-like effects on Build up of boson cloud around
scales 4,5 2 pc BHs sucks their spins away

il So far we have not assumed anything about any
couplings to the SM other than via gravity.
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For more, see cajohare.github.io/ AxionLimits/ — Now lists results from ~300 publications!
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http://cajohare.github.io/AxionLimits/

Schematic of a parameter space for an ultralight boson
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Wave-like dark matter experiments
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The axion

The “QCD axion” is the explanation for why the neutron doesn’t have an EDM

E(alf,)
d «x some angle
{ Ll AgCD
ﬁ Some angle — New field
\i/f

— Tiny mass related to the energy scale f, at which axion is created as a
pseudo-Goldstone boson

N A%}CD 109G6V>

My > [
a

~ 6meV
S



Axion-photon Axion-fermion

All couplings suppressed by high energy scale: g ~ f;!

Small couplings = dark matter
Small couplings and small mass = wave-like dark matter



Constraints on an the existence of an axion coupled to the photon
(Nothing assumed about dark matter)
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Constraints on an the existence of an axion coupled to the photon
(Nothing assumed about dark matter)
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Constraints on an the existence of an axion coupled to the photon
(Nothing assumed about dark matter)
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Axion-photon coupling [GeV ']
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Searches that do assume axions are dark matter
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Direct detection

To calculate any experimental signal of dark matter we need to know
1. How much dark matter there is around the Earth, p
2. How fast it’s moving, v

For wave-like dark matter
T these correspond to:
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Wave-like dark matter “lineshape”

Oscillations are coherent for 10° cycles, but most haloscopes
observe over much longer timescales
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Axion haloscopes
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Dark-SRF ADMX-EFR MADMAX LAMPOST

2207.11346 2203.14923 2003.10894 2110.01582

DM-Radio ALPHA

2204.13781 2210.00017 2111.12103



existing bounds

A

2209.08125

Dark matter new initiative
(DMNI)
Snowmass 21

US putting $ into
— ADMX-EFR (high mass)
— DM-Radio m’> (low mass)
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107 Light-shining:through-walls Biggest challenge right now is
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Axion field, 8 = a/ f,

Axion cosmology: the misalignment mechanism

Initial angle 6,

M’

Time

~

Axion is the phase of a complex scalar field
governed by a tilted wine-bottle potential.

V(®)

0;
Axion field rolls down from some angle
and becomes a damped harmonic oscillator

Amount of DM 91.2
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We should be able to do better than this.
But there are two big problems...

Pre-inflation: calculation is easy... but there is a free parameter 6,
that we have no a priori knowledge of

Post-inflation: no free parameters... but things get complicated



Topological defects in the axion field in the post-inflationary scenario




Topological Axions free- Ultra-small scale Axion
defects produce stream until structures miniclusters
relativistic axions non-relativistic collapse form



Gravitational collapse of
inhomogeneities left over after
QCD phase transition leads to
the formation of ~AU sized
clumps of axions with masses

Me 107,101 M

— axion miniclusters

Eggemeier, O’Hare, Pierobon, Redondo, Won

[in prep.]



Eggemeier, O’Hare, Pierobon, Redondo, Wong [in prep.]

Miniclusters

“Minivoids”

Miniclusters contain >80% of
the axions but make up <1% of
the volume

We travel at about

0.2 mpc per year through the
galaxy so are much more likely
to be in the minivoids than the
miniclusters




Implications for haloscopes

10_10 Neutron Stars

I""’ Globular
H clusters
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10~° 1072
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Eggemeier, O’Hare, Pierobon, Redondo, Wong [in prep.]

Typical density in the
minivoids is ~0.085 of the
mean density of dark
matter

— Not a nice conclusion,
but it could have been
much worse!



Enough axions



Vector wave-dark matter:
Dark photons

Extend SM gauge group: SU(3). x SU(2)r x U(1)y X U(l)/ with some
\_ gauge boson X”

Bel X “Kinetic mixing”
E‘?\]W—) L D) —— FMVXHV with SM photon
2 quantified by y

Need a mass-generation mechanism, but that’s it
— Very minimal model. Can be a mediator to a dark sector coupled via
millicharge, or a wave-like DM candidate in and of itself
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Kinetic mixing
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p—
-
-

| | |
= W N =

|
O © N3 O Ul

CDCDCDCDC?CDCDCDCD

Haloscopes

ER searches

AT A6 AD AR AD A2 Ay A0 9 % 7T 6 95 & 2% 2 ANV V. 2.3 D0
10710740740 407407407107 107107407407 407107 407107407 107407 407407 40710

Dark photon mass [eV]



Dark photon electrodynamics versus Axion electrodynamics

Axions source an effective current in a similar way, but only in the presence of an
applied B-field, meaning DPs can searched for with exactly the same techniques

Pop = kG VQPDM szX

DP
limit

— no B-field required!

xXmx < ga"yB

P axion — K g VQPDM

Axion
limit
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Green = dedicated
DP searches
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Enough photons



Back to axions... fermion couplings, e.g. neutron
— Hard to beat astrophysical bounds
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Back to axions... fermion couplings, e.g. neutron
— Hard to beat astrophysical bounds
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An easier path... Scalar dark matter

P(X, 1)

L=+ —g,0(x,t)F, F" — gyo(x, 1))

’ /
Interaction looks like a mass term
— e.g. time-varying electron mass



Scalar dark matter constraints
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Gauge coupling, ¢p_1.

10—°

j_O—lo
j_O—ll
1_0_12
j_0_13
j_0_14
j_0_15
j_O—16
j_0—17
j_0—18
j_0—19
j_O—ZO
l0_21
j_0—22
10—23
j_0—24
j_0_25
j_0_26
j_0_27
j_0—28

'0—29

uHz

mHz

Eot-Wash (DM)

Hz kHz

=
g
©
20
E
@)
>
=

MHz

GHz

THz

eV

keV

22 0 20 A9 AR AT A0 A9 AB 4D A2 AN A0 .9 R T 6. .5 & 5 2 A0 ot
1074040740740 1071074040 40740740710 10 10 40 40 40 40 40 40 40 10710710740710

Vector boson mass [eV]



Pure laboratory tests of axion-fermion fifth forces

Key point: any SM or BSM CP-violation (could be e.g. size of Jarlskog invariant of CKM matrix) could shift
axion vev and generate CP-violating axion-fermion couplings in addition to the CP-conserving ones

LD —a) g (" v) —a) gf W)
y y

wl\gV \qy \QV

¢ a a

%/9.82\ m /g:pZ\

Monopole-monopole Monopole-dipole Dipole-dipole
(Spin independent) (Spin dependent) (Spin dependent)
— e.g. tests of inverse — Spin-mass forces e.g. — Forces between spin-

square law /WEP ARIADNE/QUAX polarised samples



Monopole-dipole searches

Conceptually similar, spin an unpolarised source mass near to a spin-polarised target

ARIADNE QUAX

Constrains: g, g5 (nucleon-nucleon) Constrains: g, gs (electron-nucleon)
(Latest QUAX result 2011.07100)

Quartz block with Nb
magnetic shielding
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Challenge stellar bounds tightly constrain gand spm
independent fifth force tests easily constrain gs: so Astro x ,
~ Lab bound on these coupling combos are very strong
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Pure laboratory tests for monopole-dipole axion-mediated forces
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Hard to beat the astrophysical bounds, but ARIADNE projects that it will

O’Hare & Vitagliano [2010.03889]



CP violation and the neutron electric dipole moment

Theory: Vacuum structure of QCD Experiment: 0, observable but
(instantons) generates a term bundled with phase from quark
masses
e ~ _
L = ... ~00cpG eGP _
QCD - YacpGvalag 0 = Oqcp + 0,
‘ Where it sets the electric dipole
Some angle, not fixed by theory, moment of the neutr_ On
so presumably O(1) d, = (2.44+1.0)0 x 10~ efm
Put some spin- Measure spin Caleulate Measure
polarised neutrons == precession =——> . EDM — > Fundamental
in E, B fields frequencies parameter of SM
(lﬂ!'
n vy = 2|upB £ d, E d,, 0ocp

S —



EDM Iimits / e cm
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What do they see?

d,| <1.8x107*®ecm (90% CL)

= 9 <1010

Conclusion: The strong interaction seems to be
conserving CP when it generically shouldn’t
— The strong CP problem

l

year

The real problem: why are two completely
unrelated numbers cancelling each other < ppb?

1950 1960 1970 1980 1990 2000 2010 2020




The solution, a la Peccei-Quinn

QCD vacuum energy density already has a minimum at 8 = 0 (Vafa-Witten
theorem). However 6 is just a parameter, there is no mechanism to cause it to
want to minimise energy

E(O)

4
AQCD

0 — 7T T

PQ mechanism: what if there was?



The axion

E(alf,)
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2 f,

oIntroduce field, a, that couples to gluons  (a/f,) GG. It will have a shift symmetry that

can be used to cancel off any unwanted CP violation while VW theorem ensures (a) = 0

¢ QCD vacuum implies a potential for the axion and thus a small mass
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Say [GeV 1]
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“QCD band”
E/N € [5/3,44/3] [1705.05370]

— KSVZ-like models with 1 new heavy quark.
Band covers all possible representations under

SU@3). x SUQ2); x U(1)y satisfying various

theoretical conditions

(no Landau poles below Planck scale and the
quark itself is not cosmologically stable)
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Say [GeV 1]
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709.06085

s of varying contrivance

\ Photophobic axions
e.g. accidental cancellations
(can happen if /#', > 1[1705.05370])



DSNALP
Fermi-SNe

Light ALP-photon oscillations in astrophysical B-fields

Mrk 421 7~

(Galaxies, galaxy clusters, and the Milky Way)
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. e o . . Ratfelt & Stodolsky 1988
PhOton-aXIOn mIXIng ln a B-flEld (https:/ /inspirehep.net/literature /253874)

»

' R 1 1
R o - Ly = 56‘ua6’”a 2m2a F.,F" 4+ govaE - B

Ap
equation for 8

¢ ' | Linearised wave
W +
photon-axion mixing
Ay =

2

Mixing element Axion mass element ~ Photon mass element


https://inspirehep.net/literature/253874

Axion only mixes with A, so rotate into new

basis and solve like neutrino oscillations:

Probability for photon to convert to axion
after travelling distance z:

Where,

40 )= (<t ey (M)

(0| a(L) P = Pay = sin? 20) s ()

cos(26)

1 2, 2 _ 2
0 = — arctan ( ! > A = ™ wpl‘L
2 Apl _ Aa 4w



Photon-axion conversion probability
For very light axions, m,, is negligible compared to @

pl
— m. < 10712 eV for typical astrophysical plasmas . = 107> cm-3
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Key issues to be resolved

Axion dark matter abundance/axion mass Implications of an inhomogeneous axion distribution
— Current simulations cannot study the string — Formation of gravitationally bound structures “axion
scaling regime in full due to high required dynamical miniclusters”

range, see e.g. [2007.04990] — Do miniclusters survive to present day? Could be

important for direct and indirect searches

— (Can stable axion stars form inside miniclusters?
Could there be signals of these e.g. fast radio bursts?
May need to solve full SP system to understand this.

— Not clear if the spectrum is dominated by IR
modes (meaning large overproduction) or UV modes
(Important for predicting the axion mass, see

[2108.05368] for recent work with AMR)

[1804.05857]
log(m:/H) = 5 ‘ w ‘
T _ X ' axion strings
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